• 제목/요약/키워드: specific RNA

검색결과 1,718건 처리시간 0.036초

옥수수 미토콘드리아 NAD4유전자의 cDNA cloning과 특이한 RNA editing 현상 (Molecular cDNA cloning and unusual RNA editings of NAD4 gene from Zea mays mitochondrion)

  • 설일환
    • 생명과학회지
    • /
    • 제8권2호
    • /
    • pp.203-207
    • /
    • 1998
  • 본 연구는 옥수수에서 분리한 미토콘드리아에서 NADH-dehydrogenase 유전자 (subunit 4)의 cDNA를 RT-PCR의 방법을 사용하여 조제 한 ㅜ 염기서열 수행한 경과 특이한 점을 감지 할 수 있었다. 일반적인 RNA cditing은 C에서 U로 또는 U에서 C로 치환되는 현장으로 옥수수의 NAD4유전자에서도 이러한 editing 형상이 일어나는 것을 발견하였다. 또는 T가 G로 그리고 G 가 A로 변화되는 특이한 부분들이 생성되는 것을 관찰하였다. 이러한 RNA ediring은 주로 exon 1과 exon 4 에 많이 일어나며, 염기 치환되는 부분들은 에서늬 NAD4유전자의 RNA edting site들과 일피하지 않은 점으로 미루어 보아 RNA editing 현상은 무작의로 생성된다고 본다.된다고 본다.

  • PDF

Identification of a novel PARP4 gene promoter CpG locus associated with cisplatin chemoresistance

  • Hye Youn Sung;Jihye Han;Yun Ju Chae;Woong Ju;Jihee Lee Kang;Ae Kyung Park;Jung-Hyuck Ahn
    • BMB Reports
    • /
    • 제56권6호
    • /
    • pp.347-352
    • /
    • 2023
  • The protein family of poly (ADP-ribose) polymerases (PARPs) is comprised of multifunctional nuclear enzymes. Several PARP inhibitors have been developed as new anticancer drugs to combat resistance to chemotherapy. Herein, we characterized PARP4 mRNA expression profiles in cisplatin-sensitive and cisplatin-resistant ovarian cancer cell lines. PARP4 mRNA expression was significantly upregulated in cisplatin-resistant ovarian cancer cell lines, and this upregulation was associated with the hypomethylation of specific cytosine-phosphate-guanine (CpG) sites (cg18582260 and cg17117459) on its promoter. Reduced PARP4 expression was restored by treating cisplatin-sensitive cell lines with a demethylation agent, implicating the epigenetic regulation of PARP4 expression by promoter methylation. Depletion of PARP4 expression in cisplatin-resistant cell lines reduced cisplatin chemoresistance and promoted cisplatin-induced DNA fragmentation. The differential mRNA expression and DNA methylation status at specific PARP4 promoter CpG sites (cg18582260 and cg17117459) according to cisplatin responses, was further validated in primary ovarian tumor tissues. The results showed significantly increased PARP4 mRNA expressions and decreased DNA methylation levels at specific PARP4 promoter CpG sites (cg18582260 and cg17117459) in cisplatin-resistant patients. Additionally, the DNA methylation status at cg18582260 CpG sites in ovarian tumor tissues showed fairly clear discrimination between cisplatin-resistant patients and cisplatin-sensitive patients, with high accuracy (area under the curve = 0.86, P = 0.003845). Our findings suggest that the DNA methylation status of PARP4 at the specific promoter site (cg18582260) may be a useful diagnostic biomarker for predicting the response to cisplatin in ovarian cancer patients.

Lactococcal plasmid pGKV21의 SSB-coated 229-nt ssi signal 상에서 E. coli RNA polymerase에 의한 시발체 RNA 합성 (Primer RNA Synthesis by E. coli RNA Polymerase on the SSB-coated 229-nt ssi Signal of Lactococcal Plasmid pGKV21)

  • 정진용;김은실;김삼웅;강호영;박정동
    • 생명과학회지
    • /
    • 제19권3호
    • /
    • pp.305-310
    • /
    • 2009
  • 플라스미드 pGKV21에는 229-nt single-strand DNA initiation (ssi) signal이 존재한다. Asymmetric PCR 기법으로 합성된 229-nt ssDNA 단편을 이용하여 실제로 RNA polymerase에 의한 priming ability와 protein interaction을 확인하였다. in vitro primer RNA 합성 실험 결과, 229-nt ssDNA 단편은 filamentous M13 phage의 주형 DNA에서와 비슷한 효율로 시발체 RNA를 합성하였으며, 이 반응은 strand-specific하게 이루어졌다. DNase I footprinting과 gel retardation 실험 결과, RNA polymerase와 SSB 단백질은 229-nt ssDNA 단편에 stable interaction을 하며, 시발체 RNA를 합성하였다. 또한, in vivo 조건 하에서 RNA polymerase의 저해제인 rifampicin을 처리하여 세포내에 ssDNA 중간체가 집적되는 정도를 비교하여 본 결과, 플라스미드 pGKV21은 rifampicin-sensitive RNA polymerase가 상보가닥 합성에 관여 함을 보여 주었다.

Gene Expression of Arginine Vasotocin in Ovarian and Uterine Tissues of the Chicken

  • Saito, N.;Grossmann, R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제12권5호
    • /
    • pp.695-701
    • /
    • 1999
  • The hypothalamus is the classic site of synthesis of arginine vasotocin as neurohypophyseal hormone in the chicken. However, high concentrations of arginine vasotocin were also measured in ovarian tissues by radioimmunoassay. At first, we observed specific positive signal of mRNA encoding AVT in the hypothalamus by Northern hybridization. However, we could not find any specific bands in ovarian and uterine tissues. For evidence of transcription of the arginine vasotocin gene ingonadal tissues of the chicken, this study has applied the polymerase chain reaction as a highly sensitive assay. The hypothalamus, the four largest preovulatory ovarian follicles and the shell gland (uterus) were collected at 4 h and 20 h before oviposition. The ovarian follicular tissues were separated into granulose theca interns and theca externa layers. The uterine tissues were separated into myometrium and endometrium The extracted mRNA was converted to cDNA by reverse-transcriptase using oligo-$d(T)_{15}$ primer. Then, the cDNA was amplified by Vent polymerase and arginine vasotocin specific primers. The amplification reaction was incubated by 30 cycles successively, $95^{\circ}C$, $55^{\circ}C$ and $72^{\circ}C$ earth for 1 min. Te comparisons of the mRNA levels encoding arginine vasotocin between the tissues were determined by semi-quantification methods. After amplification of the cDNA, the PCR products were detected in hypothalamus, ovarian tissues and uterine tissues. The results of semi-quantification showed that the levels of arginine vasotocin mRNA in ovarian iud uterine tissues were about from 1/50 to 1/1000 when compared to that in the hypothalamus. The very low levels of mRNA encoding arginine vasotocin in ovarian and uterine tissues probably led us to conclude that arginine vasotocin may play a role of local mediate acting autocrine and/or paracrine.

Type-specific Amplification of 5S rRNA from Panax ginseng Cultivars Using Touchdown (TD) PCR and Direct Sequencing

  • Sun, Hun;Wang, Hong-Tao;Kwon, Woo-Saeng;Kim, Yeon-Ju;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • 제33권1호
    • /
    • pp.55-58
    • /
    • 2009
  • Generally, the direct sequencing through PCR is faster, easier, cheaper, and more practical than clone sequencing. Frequently, standard PCR amplification is usually interpreted by mispriming internal or external regions of the target template. Normally, DNA fragments were eluted from the gel using Gel extraction kit and subjected to direct sequencing or cloning sequencing. Cloning sequencing has often troublesome and needs more time to analyze for many samples. Since touchdown (TD) PCR can generate sufficient and highly specific amplification, it reduces unwanted amplicon generation. Accordingly, TD PCR is a good method for direct sequencing due to amplifying wanted fragment. In plants the 5S-rRNA gene is separated by simple spacers. The 5S-rRNA gene sequence is very well-conserved between plant species while the spacer is species-specific. Therefore, the sequence has been used for phylogenetic studies and species identification. But frequent occurrences of spurious bands caused by complex genomes are encountered in the product spectrum of standard PCR amplification. In conclusion, the TD PCR method can be applied easily to amplify main 5S-rRNA and direct sequencing of panax ginseng cultivars.

BC200 RNA: An Emerging Therapeutic Target and Diagnostic Marker for Human Cancer

  • Shin, Heegwon;Kim, Youngmi;Kim, Meehyein;Lee, Younghoon
    • Molecules and Cells
    • /
    • 제41권12호
    • /
    • pp.993-999
    • /
    • 2018
  • One of the most interesting findings from genome-wide expression analysis is that a considerable amount of noncoding RNA (ncRNA) is present in the cell. Recent studies have identified diverse biological functions of ncRNAs, which are expressed in a much wider array of forms than proteins. Certain ncRNAs associated with diseases, in particular, have attracted research attention as novel therapeutic targets and diagnostic markers. BC200 RNA, a 200-nucleotide ncRNA originally identified as a neuron-specific transcript, is abnormally over-expressed in several types of cancer tissue. A number of recent studies have suggested mechanisms by which abnormal expression of BC200 RNA contributes to the development of cancer. In this article, we first provide a brief review of a recent progress in identifying functions of BC200 RNA in cancer cells, and then offer examples of other ncRNAs as new therapeutic targets and diagnostic markers for human cancer. Finally, we discuss future directions of studies on BC200 RNA for new cancer treatments.

Long Non-coding RNAs are Differentially Expressed in Hepatocellular Carcinoma Cell Lines with Differing Metastatic Potential

  • Fang, Ting-Ting;Sun, Xiao-Jing;Chen, Jie;Zhao, Yan;Sun, Rui-Xia;Ren, Ning;Liu, Bin-Bin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권23호
    • /
    • pp.10513-10524
    • /
    • 2015
  • Background: Metastasis is a major reason for poor prognosis in patients with cancer, including hepatocellular carcinoma (HCC). A salient feature is the ability of cancer cells to colonize different organs. Long non-coding RNAs (lncRNAs) play important roles in numerous cellular processes, including metastasis. Materials and Methods: In this study, the lncRNA expression profiles of two HCC cell lines, one with high potential for metastasis to the lung (HCCLM3) and the other to lymph nodes (HCCLYM-H2) were assessed using the Arraystar Human LncRNA Array v2.0, which contains 33,045 lncRNAs and 30,215 mRNAs. Coding-non-coding gene co-expression (CNC) networks were constructed and gene set enrichment analysis (GSEA) was performed to identify lncRNAs with potential functions in organ-specific metastasis. Levels of two representative lncRNAs and one representative mRNA, RP5-1014O16.1, lincRNA-TSPAN8 and TSPAN8, were further detected in HCC cell lines with differing metastasis potential by qRT-PCR. Results: Using microarray data, we identified 1,482 lncRNAs and 1,629 mRNAs that were differentially expressed (${\geq}1.5$ fold-change) between the two HCC cell lines. The most upregulated lncRNAs in H2 were RP11-672F9.1, RP5-1014O16.1, and RP11-501G6.1, while the most downregulated ones were lincRNA-TSPAN8, lincRNA-CALCA, C14orf132, NCRNA00173, and CR613944. The most upregulated mRNAs in H2 were C15orf48, PSG2, and PSG8, while the most downregulated ones were CALCB, CD81, CD24, TSPAN8, and SOST. Among them, lincRNA-TSPAN8 and TSPAN8 were found highly expressed in high lung metastatic potential HCC cells, while lowly expressed in no or low lung metastatic potential HCC cells. RP5-1014O16.1 was highly expressed in high lymphatic metastatic potential HCC cell lines, while lowly expressed in no lymphatic metastatic potential HCC cell lines. Conclusions: We provide the first detailed description of lncRNA expression profiles related to organ-specific metastasis in HCC. We demonstrated that a large number of lncRNAs may play important roles in driving HCC cells to metastasize to different sites; these lncRNAs may provide novel molecular biomarkers and offer a new basis for combating metastasis in HCC cases.

다운증후군의 Dyrk1A 의존적 뇌기능저하의 치료: 인간 Dyrk1A 특이적 shRNA 발굴 (Treatment of Dyrk1A-dependent Mental Retardation of Down Syndrome: Isolation of Human Dyrk1A-specific shRNA)

  • 정민수;김연수;김주현;김정훈;정설희;송우주
    • 생명과학회지
    • /
    • 제19권3호
    • /
    • pp.317-321
    • /
    • 2009
  • 다운증후군은 추가적으로 존재하는 인간염색체 21번에 위치한 유전자의 과발현으로 발병한다. 다운증후군 환자에서 보이는 여러 증상들 중 학습과 기억능력 저하와 같은 뇌기능 저하는 다운증후군 환자가 독립적인 생활을 영위하는데 가장 큰 걸림돌이 된다. 인간염색체 21번에 위치하는 Dyrk1A는 신경발달에 중요한 역할을 하는 단백질로 Dyrk1A를 과발현 하는 형질전환 생쥐에서 심각한 해마 의존적 학습과 기억 장애가 보고되었다. 본 연구에서는 인간 Dyrk1A를 과발현 하는 형질전환 생쥐와 RNA interference (RNAi) 방법을 이용하여 endogenous mouse Dyrk1A의 발현은 정상적으로 유지하면서 exogenous human Dyrk1A 발현은 특이적으로 저해함으로써 인간 Dyrk1A 과발현에 의한 학습과 기억 능력저하를 회복시킬 수 있는지 동물모델에서 검증하기 위한 첫 단계로 인간 Dyrk1A 특이적 lentiviral short hairpin RNA (shRNA)를 발굴하였다. 발굴된 shRNA를 이용한 형질전환 모델생쥐에서의 증상의 회복 가능성 검증은 다운증후군의 뇌기능저하 치료제 개발에 중요한 정보를 제공할 것이다.

식육감별을 위한 미토콘드리아 12S rRNA와 16S rRNA 유전자의 종 특이적 multiplex PCR 기법 개발 (Development of species-specific multiplex PCR assays of mitochondrial 12S rRNA and 16S rRNA for the identification of animal species)

  • 고바라다;김지연;나호명;박성도;김용환
    • 한국동물위생학회지
    • /
    • 제34권4호
    • /
    • pp.417-428
    • /
    • 2011
  • Species-specific PCR assay was developed for detection of cattle, sheep, goat, horse, dog, pig, chicken, duck, goose, and turkey using mitochondrial 12S rRNA and 16S rRNA as target genes. Also, an internal positive control was used to detect possible false negatives by using 18S rRNA gene. We designed species-specific primers with amplicon length of 190, 219, 350, 467, 241, 119, 171, 229, 111 and 268 bp for cattle, sheep, goat, horse, dog, pig, chicken, duck, goose, and turkey respectively. The specificity of the primers was tested against the other 10 non-target animal species and a cross-reaction was not observed. We developed two multiplex PCR assays for the simultaneous identification of Korea's major livestock species (cattle, pig, chicken and duck) and poultry species (chicken, duck, goose and turkey) from analogous samples, retaining the same specificity. The limit of detection of the multiplex PCR assay (cattle, pig, chicken and duck) ranged between 1 pg and 0.1 pg of template DNA extracts from raw meat. Applying multiplex PCR assays to DNA extracts from experimental pork/beef and pork/chicken tested raw and heat-treated ($120^{\circ}C$ for 30 min) mixtures respectively, detection limit was 0.1% level beef in pork, pork in beef and chicken in pork and 1.0% level pork in chicken. In conclusion, this assay using gel-based capillary electrophoresis would be very useful in highly sensitive and rapid identification of animal species or ingredients in minced meat and other meat products.

Histone H4-Specific Deacetylation at Active Coding Regions by Hda1C

  • Lee, Min Kyung;Kim, TaeSoo
    • Molecules and Cells
    • /
    • 제43권10호
    • /
    • pp.841-847
    • /
    • 2020
  • Histone acetylation and deacetylation play central roles in the regulation of chromatin structure and transcription by RNA polymerase II (RNA Pol II). Although Hda1 histone deacetylase complex (Hda1C) is known to selectively deacetylate histone H3 and H2B to repress transcription, previous studies have suggested its potential roles in histone H4 deacetylation. Recently, we have shown that Hda1C has two distinct functions in histone deacetylation and transcription. Histone H4-specific deacetylation at highly transcribed genes negatively regulates RNA Pol II elongation and H3 deacetylation at inactive genes fine-tunes the kinetics of gene induction upon environmental changes. Here, we review the recent understandings of transcriptional regulation via histone deacetylation by Hda1C. In addition, we discuss the potential mechanisms for histone substrate switching by Hda1C, depending on transcriptional frequency and activity.