• Title/Summary/Keyword: specific RNA

Search Result 1,746, Processing Time 0.028 seconds

Functional Modification of a Specific RNA with Targeted Trans-Splicing

  • Park, Young-Hee;Kim, Sung-Chun;Kwon, Byung-Su;Jung, Heung-Su;Kim, Kuchan;Lee, Seong-Wook
    • Genomics & Informatics
    • /
    • v.2 no.1
    • /
    • pp.45-52
    • /
    • 2004
  • The self-splicing group I intron from Tetrahymena thermophila has been demonstrated to perform splicing reaction with its substrate RNA in the trans configuration. In this study, we explored the potential use of the trans-splicing group I ribozymes to replace a specific RNA with a new RNA that exerts any new function we want to introduce. We have chosen thymidine phosphorylase (TP) RNA as a target RNA that is known as a valid cancer prognostic factor. Cancer-specific expression of TP RNA was first evaluated with RT-PCR analysis of RNA from patients with gastric cancer. We determined next which regions of the TP RNA are accessible to ribozymes by employing an RNA mapping strategy, and found that the leader sequences upstream of the AUG start codon appeared to be particularly accessible. A specific ribozyme recognizing the most accessible sequence in the TP RNA with firefly luciferase transcript as a 3' exon was then developed. The specific trans-splicing ribozyme transferred an intended 3' exon tag sequence onto the targeted TP transcripts, resulting in a more than two fold induction of the reporter activity in the presence of TP RNA in mammalian cells, compared to the absence of the target RNA. These results suggest that the Tetrahymena ribozyme can be a potent anti-cancer agent to modify TP RNAs in tumors with a new RNA harboring anti-cancer activity.

Transfer RNA Acceptor Stem Determinants for Specific Aminoacylation by Class II Aminoacyl-tRNA Synthetases

  • Musier, Karin
    • BMB Reports
    • /
    • v.31 no.6
    • /
    • pp.525-535
    • /
    • 1998
  • A critical step in the faithful translation of genetic information is specific tRNA recognition by aminoacyl-tRNA synthetases. These enzymes catalyze the covalent attachment of particular amino acids to the terminal adenosine of cognate tRNA substrates. In general, there is one synthetase for each of the twenty amino acids and each enzyme must discriminate against all of the cellular tRNAs that are specific for the nineteen noncognate amino acids. Primary sequence information combined with structural data have resulted in the division of the twenty synthetases into two classes. In recent years, several high-resolution co-crystal structures along with biochemical data have led to an increased understanding of tRNA recognition by synthetases of both classes. The anticodon sequence and the amino acid acceptor stem are the most common locations for critical recognition elements. This review will focus on acceptor stem discrimination by class II synthetases. In particular, the results of in vitro aminoacylation assays and site-directed and atomic group mutagenesis studies will be discussed. These studies have revealed that even subtle atomic determinants can provide signals for specific tRNA aminoacylation.

  • PDF

How are Bayesian and Non-Parametric Methods Doing a Great Job in RNA-Seq Differential Expression Analysis? : A Review

  • Oh, Sunghee
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.2
    • /
    • pp.181-199
    • /
    • 2015
  • In a short history, RNA-seq data have established a revolutionary tool to directly decode various scenarios occurring on whole genome-wide expression profiles in regards with differential expression at gene, transcript, isoform, and exon specific quantification, genetic and genomic mutations, and etc. RNA-seq technique has been rapidly replacing arrays with seq-based platform experimental settings by revealing a couple of advantages such as identification of alternative splicing and allelic specific expression. The remarkable characteristics of high-throughput large-scale expression profile in RNA-seq are lied on expression levels of read counts, structure of correlated samples and genes, larger number of genes compared to sample size, different sampling rates, inevitable systematic RNA-seq biases, and etc. In this study, we will comprehensively review how robust Bayesian and non-parametric methods have a better performance than classical statistical approaches by explicitly incorporating such intrinsic RNA-seq specific features with flexible and more appropriate assumptions and distributions in practice.

In Vitro Selection of Cancer-Specific RNA Aptamers

  • Lee Young-Ju;Lee Seong-Wook
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.7
    • /
    • pp.1149-1153
    • /
    • 2006
  • In this study, nuclease-resistant RNA aptamers that are specific for Jurkat T leukemia cells were selected by a subtractive systemic evolution of ligands by exponential enrichment (SELEX) method. A randomized nuclease-resistant RNA library was incubated with normal peripheral blood mononuclear cells (PBMC) in each round to preclude RNAs that recognize the common cellular components on the surface of normal and cancer cells. The precluded RNAs were used for the selection of Jurkat T cell-specific aptamers, and the specific RNAs were then gradually enriched from start to the following selections. After 16 rounds of the subtractive SELEX, the selected aptamers were found to preferentially bind to Jurkat T cells, but not to the normal PBMC, evidenced by fluorescence-activated cell sorting analysis. Thus, the subtractive SELEX can be used to identify ligands to cancer-specific biological markers without prior knowledge of the nature of markers. The aptamers could be applied to specific cell sorting, tumor therapy, and diagnosis, and moreover, to find cancer cell-specific markers.

Specificity of Intracellular Trans-Splicing Reaction by hTERT-Targeting Group I Intron

  • Jung, Heung-Su;Kwon, Byung-Su;Lee, Seong-Wook
    • Genomics & Informatics
    • /
    • v.3 no.4
    • /
    • pp.172-174
    • /
    • 2005
  • Recent anti-cancer approaches have been based to target tumor-specifically associated and/or causative molecules such as RNAs or proteins. As this specifically targeted anti-cancer modulator, we have previously described a novel human cancer gene therapeutic agent that is Tetrahymena group I intron-based trans-splicing ribozyme which can reprogram and replace human telomerase reverse transcriptase (hTERT) RNA to selectively induce tumor-specific cytotoxicity in cancer cells expressing the target RNA. Moreover, the specific ribozyme has been shown to efficiently retard tumor tissues in xenograft mice which had been inoculated with hTERT-expressing human cancer cells. In this study, we assessed specificity of trans-splicing reaction in cells to evaluate the therapeutic feasibility of the specific ribozyme. In order to analyze the trans-spliced products by the specific ribozyme in hTERT-positive cells, RT, 5'-end RACE-PCR, and sequencing reactions of the spliced RNAs were employed. Then, whole analyzed products resulted from reactions only with the hTERT RNA. This study suggested that the developed ribozyme perform highly specific RNA replacement of the target RNA in cells, hence trans-splicing ribozyme will be one of specific agents for genetic approach to revert cancer.

Effects of long double-stranded RNAs on the resistance of rock bream Oplegnathus fasciatus fingerling against rock bream iridovirus (RBIV) challenge

  • Kosuke, Zenke;Kim, Ki-Hong
    • Journal of fish pathology
    • /
    • v.23 no.3
    • /
    • pp.273-280
    • /
    • 2010
  • To determine whether rock bream Oplegnathus fasciatus can be protected from rock bream iridovirus (RBIV) infection by intramuscular injection of long double-stranded RNAs (dsRNAs), we compared protective effect of virus-specific dsRNAs corresponding to major capsid protein (MCP), ORF 084, ORF 086 genes, and virus non-specific green fluorescent protein (GFP) gene. Furthermore, to determine whether the non-specific type I interferon (IFN) response was associated with protective effect, we estimated the activation of type I IFN response in fish using expression level of IFN inducible Mx gene as a marker. As a result, mortality of fish injected with dsRNAs and challenged with RBIV was delayed for a few days when comparing with PBS injected control group. However, virus-specific dsRNA injected groups exhibited no significant differences in survival period when compared to the GFP dsRNA injected group. Semi-quantitative analysis indicated that the degree of antiviral response via type I IFN response is supposedly equal among dsRNA injected fish. These results suggest that type I IFN response rather than sequence-specific RNA interference might involve in the lengthened survival period of fish injected with virus-specific dsRNAs.

RT-PCR Detection of dsRNA Mycoviruses Infecting Pleurotus ostreatus and Agaricus blazei Murrill

  • Kim, Yu-Jeong;Park, Sang-Ho;Yie, Se-Won;Kim, Kook-Hyung
    • The Plant Pathology Journal
    • /
    • v.21 no.4
    • /
    • pp.343-348
    • /
    • 2005
  • The partial nucleotide sequences of the genomic dsRNA mycoviruses infecting Pleurotus ostreatus (isolates ASI2596, ASI2597, and Bupyungbokhoe) and Agaricus blazei Murrill were determined and compared with those of the other dsRNA mycoviruses. Partial nucleotide sequences of the purified dsRNA from ASI2596 and ASI2597 revealed RNA-dependent RNA polymerase sequences that are closely related to Oyster mushroom isometric virus 2, while nucleotide sequences and the deduced amino acid sequence from dsRNA mycovirus infecting Agaricus blazei did not show any significant homology to the other dsRNA mycoviruses. Specific primers were designed for RT-PCR detection of these dsRNA viruses and were found to specifically detect each dsRNA virus. Northern blot analysis confirmed the homogeneity of RT-PCR products to each purified dsRNA. Altogether, our results suggest that these virus-specific primer sets can be employed for the specific detection of each dsRNA mycovirus in infected mushrooms.

Use of 16S-23S rRNA Intergenic Spacer Region for Species-specific Primer Developed of Vibrio Ichthyoenteri (16S-23S rRNA Intergenic Spacer Region을 이용한 Vibrio ichthyoenteri Species-specific Primer 개발)

  • Moon Young-Gun;Heo Moon-Soo
    • Korean Journal of Microbiology
    • /
    • v.41 no.2
    • /
    • pp.117-124
    • /
    • 2005
  • Two bacterial isolates obtained from rotifer and diseased olive flounder larvae, Paralichthys olivaceus, were identified as Vibrio ichthyoenteri based on the results of phenotypic characterization. In an attempt to develop rapid PCR method for the detection of V. ichthyoenteri, we examined the 16S-23S rRNA intergenic spacer region(ISR) of V. ichthyoenteri and developed species-specific primer for V. ichthyoenteri. Analysis of the ISR sequences showed that V. ichthyoenteri contains one type of polymorphic ISRs. The size of ISRs was 348 bp length and did not contain tRNA genes. Mutiple alignment of representative sequences from different V. species revealed several domains of high sequence variability, and allowed to design species-specific primer for detection of V. ichthyoenteri. The specificity of the primer was examined using genomic DNA prepared from 19 different V. species, isolated 18group Vibrio species and most similar sequence of other known Vibrio species. The results showed that the PCR reaction using species-specific primer designed in this study can be used to detect V. ichthyoenteri.

Long Double-stranded RNA Induces Sequence-specific RNA Interference and Type I Interferon Responses in Rock Bream (Oplegnathus fasciatus)

  • Zenke, Kosuke;Kim, Ki-Hong
    • Fisheries and Aquatic Sciences
    • /
    • v.13 no.1
    • /
    • pp.56-62
    • /
    • 2010
  • To determine whether long double-stranded RNA (dsRNA) induces RNA interference and type I interferon (IFN) responses in fish, long dsRNAs encoding enhanced green fluorescent protein (EGFP), GFPuv, and polyinosinic-polycytidylic acid sequences were co-injected with an EGFP expressing plasmid, into rock bream (Oplegnathus fasciatus). We investigated the EGFP mRNA and protein levels, and the transcriptional responses of dsRNA-dependent protein kinase and Mx1 genes. Long dsRNAs were strong inducers of a type I IFN response in rock bream, resulting in nonspecific suppression of exogenous gene expression. Furthermore, sequence-specific knockdown of exogenous gene expression at the mRNA level was detected at an early phase (24 h). These results suggested that long dsRNA may inhibit exogenous gene expression through an early mRNA interference response and a later type I IFN response in fish.

Whole-mount in situ Hybridization of Mitochondrial rRNA and RNase MRP RNA in Xenopus laevis Oocytes

  • Jeong, Sun-Joo
    • Animal cells and systems
    • /
    • v.2 no.4
    • /
    • pp.529-538
    • /
    • 1998
  • In order to analyze the intracellu1ar localization of specific RNA components of ribonucleoproteins (RNP) in Xenopus oocytes, a modified protocol of whole-mount in situ Hybridization is presented in this paper, Mitochondria specific 12S rRNA probe was used to detect the amplification and distribution of mitochondria in various stages of the oocyte life cycle, and the results were found to be consistent with previously known distribution of mitochondria. The results with other specific probes (U1 and U3 small nuclear RNAs, and 5S RNA) also indicate that this procedure is generally effective in localizing RNAs in RNP complexes even inside organelles. In addition, the RNA component of RNase MRP, the RNP with endoribo-nuclease activity, localize to the nucleus in various stages of the oocyte life cycle. Some of MRP RNA, however, were found to be localized to the special population of mitochondria near the nucleus, especially in the active stage of mitochondrial amplification. It suggests dual localization of RNase MRP in the nucleus and mitochondria, which is consistent with the proposed roles of RNase MRP in mitochondrial DNA replication and in rRNA processing in the nucleolus.

  • PDF