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Abstract
In a short history, RNA-seq data have established a revolutionary tool to directly decode various scenarios

occurring on whole genome-wide expression profiles in regards with differential expression at gene, transcript,
isoform, and exon specific quantification, genetic and genomic mutations, and etc. RNA-seq technique has been
rapidly replacing arrays with seq-based platform experimental settings by revealing a couple of advantages such
as identification of alternative splicing and allelic specific expression. The remarkable characteristics of high-
throughput large-scale expression profile in RNA-seq are lied on expression levels of read counts, structure of
correlated samples and genes, larger number of genes compared to sample size, different sampling rates, in-
evitable systematic RNA-seq biases, and etc. In this study, we will comprehensively review how robust Bayesian
and non-parametric methods have a better performance than classical statistical approaches by explicitly incorpo-
rating such intrinsic RNA-seq specific features with flexible and more appropriate assumptions and distributions
in practice.

Keywords: RNA-seq, differential expression, alternative splicing, allelic specific expression, Bay-
esian and non-parametric methods.

1. Introduction

With the advent of new elegant count based technology referred to as RNA-seq, newly developed
RNA-seq specific methods and adaptively implemented ones from microarrays have been proposed
and successfully contributed to transcriptome studies (Gerns Storey et al., 2014; Ginsberg et al.,
2010; Han and Jiang, 2014; Kim et al., 2012; Kumar et al., 2012; Li et al., 2014; Mills et al.,
2013; Nishiu et al., 2002; Satoh et al., 2014; Wang et al., 2013; Warren et al., 2015; Zhang et al.,
2014). Representative statistical methods have been popularly utilized to quantify expression levels
of mRNA abundance and identify differentially expressed genes between multiple conditions (Anders
and Huber, 2010; Anders et al., 2013; Anders et al., 2012; Bar-Joseph et al., 2012; Bi and Davuluri,
2013; Bullard et al., 2010; Glaus et al., 2012; Hardcastle and Kelly, 2010; Lee et al., 2011; Marioni
et al., 2008; Niu et al., 2014; Oh et al., 2013; Oshlack et al., 2010; Pollier et al., 2013; Roberts et
al., 2011; Robinson et al., 2010; Robinson and Oshlack, 2010; Tarazona et al., 2011; Trapnell et al.,
2009; Trapnell et al., 2012; Young et al., 2010).

To date, comparative studies between distinct mRNA samples and groups have become a rou-
tine procedure in RNA-seq, nonetheless, each method still has limitations to be further improved
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Static Differential Expression Analysis 

0. Without intra-technical or/and biological replicates 

One single sample versus the other sample  

(A sample vs. B sample, e.g. A1 vs. B1)

1. Without intra-technical or/and biological replicates 

One group versus the other group 

(A group vs. B group , e.g. A1,A2,…, An vs. B1,B2,…, Bn)

2. Multi-group comparison  

A group versus B group versus C group  

e.g. (A1,A2,…, An) vs. (B1,B2,…, Bn) vs. (C1,C2,…, Cn)

Figure 1: Static differential expression analysis.

by explicitly addressing inherent variation and systematic artifacts across samples. Various scenar-
ios in comparative study using gene expression profile are illustrated in Figure 1. As shown in the
schematic illustration, all mRNA samples are independently distributed and there is not correlated
structure between consecutive samples at all on assumptions in the experimental settings at static
differential expression analysis. On the contrary, dynamic methods assume a dependent structure be-
tween neighboring samples, for instance, markov assumption such that current state is affected by the
right previous state in the variety of time series experimental designs.

When RNA-seq platform has been firstly introduced, pairwise comparative study has been widely
conducted to compare two conditions by accounting for count property of expression levels as simi-
larly done in microarrays using classical t-test or ranked wilcox test. For example, Fisher exact test
has been proposed for this purpose simply to read counts on different mRNA samples in 2 × 2 con-
tingency table based on hypergeometric distribution (Bullard et al., 2010). The major drawback of
this method is limited to the comparison of two groups and it does not explicitly take into account the
variability of biological intra-samples lacking the assessment of reproducibility between replicates.
And it results in greatly relying upon magnitude of expression on testing in differential expression
by demonstrating more differentially expressed genes at higher expression levels. To precisely ac-
cess variability of replicates and conclude more confident outcomes, the experimental design with the
proper number of intra-samples has been recommended in the manner of well-balanced experimental
design (Marioni et al., 2008). As a prominent methodology work to precisely incorporate variability
of replicates, negative binomial distribution has been next developed in edgeR and DESeq package
with a dispersion parameter in their models (Anders and Huber, 2010; Anders et al., 2013; Robinson
et al., 2010; Robinson and Oshlack, 2010).

Followed by simple pairwise comparison, multi-group comparison has been commonly performed
and both packages have also incorporated the feature enabling to carry out generalized linear models
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containing more than two groups and other nuisance factors. Practically, a bottleneck to develop RNA-
seq specific methods is insufficient sample size compared to relatively large-size of variables (genes
and transcripts). And the calculation of optimal number of intra-replicates and inter-samples with
power of detection by controlling FDR has been performed prior to differential expression analysis
to derive more reliable statistical testing of comparison. In order to resolve these current issues in
RNA-seq methods, Bayesian and non-parametric methods have been proposed and popularly done
thus far by demonstrating equivalent at least or better performance in statistical tests compared to
existing methods that are on the basis of classical parametric assumptions (Bi and Davuluri, 2013;
Hardcastle and Kelly, 2010; Hu et al., 2014; Lee et al., 2011; León-Novelo et al., 2014; Nariai et al.,
2013; Nariai et al., 2014; Oh et al., 2013; Ryan et al., 2012; Shen et al., 2012; Shen et al., 2014;
Tarazona et al., 2011).

The remainder of manuscript will be discussed in details how Bayesian and non-parametric meth-
ods in rigorous template have been adopted and effectively addressed unknown various sources of
bias, variability of samples, and other RNA-seq specific natures which have been thoroughly unable
to address in the exiting methods.

2. Methods

Profiling high-throughput large-volume of RNA-seq expression data has been a fundamental tech-
nique to unveil unknown biological mechanisms in transcriptome studies. RNA-seq has advantageous
features that have not been detected in previous platforms in the following, the dynamic range of ex-
pression levels, higher quality of samples, and identification of diverse architecture in isoform splicing
events and tissue specific allelic imbalance, etc. In spite of the considerable advance of next genera-
tion sequencing technology, researchers have steadily further addressing various issues to intrinsically
arise in RNA-seq specific methodological, experimental, and technical perspectives. In this section,
each Bayesian and non-parametric method will be introduced and discussed how it is effectively ap-
plied to new RNA-seq expression profile data.

2.1. baySeq

baySeq method has been implemented based on an empirical Bayesian approach in gamma poisson
and empirical negative binomial distribution in the very beginning of RNA-seq comparative study.
It enabled to increase the accuracy of prediction in differential expression analysis by borrowing in-
formation across whole observed expression profiles for genes and samples (Hardcastle and Kelly,
2010). Additionally, it allows us to analyze more complicated experimental designs as a more gen-
eral statistical testing framework, whereas, the previously existing approaches are all restricted to
pairwise comparison and they do not consider the variability induced from intra-samples under the
given condition, either. In the evaluation, baySeq demonstrated that it either equivalently performs
or outperforms existing methods, over-dispersed logistic, over-dispersed log linear model, DEGSeq,
DESeq, and edgeR in both simulated and real data applications in terms of true discovery rates and
power of detected calls.

In the methodological rationale, by addressing biological hypotheses in the diversity of experimen-
tal designs, empirical Bayesian approach infers the posterior probabilities of each of a set of models
that present various combinations of differential expression patterns whether to be differentially ex-
pressed or equally expressed for each tuple as non-overlapping sets of samples. The simplest model
consists of two possible models for two different conditions, A and B, equally expressed (EE) = {A, B}
and differentially expressed (DE) = {A}, {B}. Let count-basis expression levels be a set of n samples,
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A = {A1, . . . , An} and the observed data for a particular tuple c be (u1c, . . . , unc) where uic is the read
count for a particular tuple c for sample i. And library size which is related with sequencing depth for
each mRNA sample represents by li for each tuple, a particular expression pattern,

Dc = {(u1c, . . . , unc), (l1, . . . , ln)}.

On the assumption with some model M by the sets, {E1, . . . , Em}, for the sake of simplicity, if
Ai and A j are from the identical set Eq and have the same parameters of underlying distribution θq,
K = {θ1, . . . , θm} the parameter set of given model M for the expression profile count data, the posterior
probability of the model M given the data Dc is given by

p(M|Dc) =
p(Dc|M)p(M)

p(Dc)
, (2.1)

p(Dc|M) =
∫

p(Dc|K,M)p(K|M)dK, (2.2)

when appropriate intra-replicates are available on data. Negative binomial or over-dispersed poisson
distribution is generally adopted for the underlying distribution in differential expression testing on
raw read counts or corrected expression levels after normalization. In baySeq, it estimates the over-
dispersion of biological replicates by retaining different library sizes for samples, li

uic ∼ NB
(
µqli, φq

)
, (2.3)

where θq = (µq, φq). Since there is no directly matched conjugate prior for this distribution, numerical
technique is instead applied by defining an empirical distribution on K and we then estimate p(Dc|M),

p(Dc|M) =
∫

p(Dc|K,M), (2.4)

p(K|M)dK =
∏

q

p(Dqc|θq)p(θq)dθq, (2.5)

and an empirical distribution on K is derived by examining the entire data set. The major difficulty
in this procedure is to estimate degree of dispersion, over- and under-dispersion. Firstly, as the most
optimal approach when having a very few number of samples, it assumes a common dispersion that
is identical for a tuple across different sets of samples.

In the evaluation of baySeq with others at the constant dispersion, ROC curves demonstrate that
baySeq is as good as or outperforms in terms of power of detection on controlled FDR. This method
is currently available in R and bioconductor package in the community. And it has advantages in
regards to allowance of more complex experimental designs, estimation of dispersion parameter as
well as differential expression between conditions, albeit in the case of small sample size. In principle,
varying differential expression patterns are given in the estimation of posterior probabilities across
multiple conditions (more than two) with biological intra-replicates.

As demonstrated in the paper, baySeq method depicts the real data example for the pairwise com-
parison of two RDR6 (RNA dependent RNA polymerase 6) knockout samples in the dataset of Illu-
mina sequencing from leaf samples of Arabidopsis thaliana. In the biologically expected hypothesis,
it is very well known that RDR6 is required for production of tasRNAs (trans-acting small RNAs).
Hence, the central goal of differential expression using baySeq is to identify statistically significant
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difference between wild-type and mutant samples with two intra-replicates implicating that baySeq
outperforms other competing methods by demonstrating higher rates on true biological findings.

To account for the variability of intra-replicates, negative binomial distribution has been applied
by inferring over- or under-dispersion parameter between samples due to different library sizes and
sample differences. In the results, baySeq method identified 678 different small RNA sequences that
perfectly matched the tasRNA loci, namely, matched nowhere else in the genome. In the compar-
ative outcomes, both edgeR and baySeq detect considerably more tasRNA associated small RNAs
than DESeq method, over-dispersed logistic and over-dispersed log-linear approaches. Furthermore,
baySeq identifies more tasRNA associated small RNA sequences than edgeR for a given number of
selected small RNA sequences. As we demonstrated in this section, baySeq has been introduced as an
initial approach when RNA-seq was in its infant. Strikingly, albeit it is the initial model, it allows us
to contain biological replicates in two different experimental settings including simple pairwise and
multi-group comparison. And also, it presents the posterior probabilities for differential and equal
expression pattern, how much likely the given gene is expressed for differential and equal expression,
whereas other methods simply do determine whether a gene of interest is either differential expression
or equal expression. Yet, more complicated design with multiple factors (e.g. age, gender, region, and
other profile information for individuals) for each group or time dependent structure are not applicable
in the current setting of baySeq. Hence, statistical modeling strategy for more complex comparative
studies including time series data is still remained as an open question to be further developed in the
community.

2.2. BM-DE

Another approach, BM-DE (a Bayesian method of calling differential expression) models the position-
level read counts within a gene by considering position outliers that distributed with un-uniform over
positions (Lee et al., 2011). The common approaches to aggregate such positions into a gene level
count might be misleading quantification of mRNA abundance. Because, existing methods do not
completely take the possibility of variability for position level read counts to be summarized with
single gene quantification level. As mentioned in the study, similarly, loci-specific inference approach
proposed by Ji and Liu (2010) improved the performance of detection in differential expression by
incorporating the feature to borrowing information across loci via hierarchical model even when there
are no available intra-replicates. BM-DE followed this approach and conditional on the total count

Ni j, ni j ∼ Bin
(
Ni j, pi j

)
, (2.6)

fog the positions j, where pi j represents the true proportion of the read count under the condition and
relative value to the total read count under both conditions at location j of gene i. In the modeling
approach to down-weight pi j for influencing positions in the inference for differential expression,

pi j|wi j, αi, βi
iid∼


Be (αi, βi) , if wi j = 1,

Be
(

1
2
,

1
2

)
, if wi j = 0,

(2.7)

when wi j = 0, the jth position on the gene is an outlier and prior is forced to assign most probability
mass close to 0 or 1. By following the notations as described in Lee et al. (2011)

ηi = log (αi + βi) ,

ξi = log
(
αi

βi

)
, (2.8)



186 Sunghee Oh

where ξi is the logit of the mean αi/(αi + βi) of the beta distribution.
In the set of main parameters (ξi, ηi), peculiarly large or small value of ξi indicates differential

expression and ηi represents varying levels of heterogeneity across genes. Based on the mixture of
normal distribution for ξi, differential expression is estimated by the notation,

ξi|ξ̄, s2
ξ ∼ πλ0N

(
ξ̄, s2

ξ

)
+ πλ−1N

(
ξ̄ − δ−1, s2

ξ

)
+ πλ1N

(
ξ̄ + δ1, s2

ξ

)
, (2.9)

where a latent trinary parameter λi ∈ {0,−1, 1} represents equal, under, and over-expression levels.
And it is re-notated by the equation,

ξi|λi, ξ̄ ∼ N
(
ξ̄ + λiδλi , s

2
ξ

)
, Pr (λi = l) = π̂l, l = −1, 0, 1. (2.10)

In the evaluation, position level Bayesian modeling approach demonstrates more robust estimates
by down-weighted outliers on the gene compared to analysis of sequence counts (ASC) and DEGSeq
method in synthetic data sets and yeast real data application. As presented in the paper, in the real
data application, mRNA samples were collected from yeast Saccharomyces cerevisiae strain BY474
in the comparison of rich growth medium (YEPD medium) and poor growth medium (amino acid
starvation). The central purpose of RNA-seq data analysis is to identify genes that are differentially
expressed under these two conditions. They first filtered out genes containing greater than 5 positions,
remaining, I = 1,089 genes with the range of reads from 1 to 9,334 and from 0 to 14,150 under the
distinct conditions, respectively.

Further hierarchical structure with positions from gene levels demonstrates that genes have many
positions with non-zero read counts and reads per position are small. Thus, authors presented a
yeast experimental example for differential expression at position level counts and eventually estima-
tion of more robust gene expression levels. This framework conclusively showed effective approach
by down-weighting outlying observations at position level. Proposed BM-DE method outperformed
other methods, in particular, there are position level outliers on the given gene. For the circumstance,
the hierarchical modeling approach aims at inferring to position level expression counts other than
estimating expression levels at genes by accounting for the extreme values on positions affecting to
gene level counts. Nonetheless, the method has the major limitation to be applied for RNA-seq dif-
ferential expression analysis. BM-DE does not account the variability of intra-biological replicates in
the comparison. In order to access reproducibility and variability of intra-replicates, authors remained
the part as an important future study that might be straightforwardly extended with the multinomial
likelihood in dirichlet prior.

2.3. NOISeq

NOISeq has been proposed in the purpose to precisely account for different sequencing depth across
samples on the basis of data-adaptive non-parametric strategy (Tarazona et al., 2011). More specif-
ically, it has been developed by comprehensively investigating the relationship between sequencing
depth and differential expression in order to investigate the questionnaire how sequencing depth af-
fects the detection of transcripts and corresponding differential expression, respectively. Basically,
NOISeq estimates differential expression at gene levels, although it is possible to straightforwardly
extend this method for trasncripts and exon quantification. In particular, the gene expression level in
this method is defined by the number of reads or in the library mapping to a gene, that is, the read
counts.

Let ci
g j denote the number of read counts for each gene i in the jth sample from different condi-

tions, g = 1 and 2. And sg j denotes the library size computed as the sum of counts ci
g j over all the
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genes. For the jth replicate in the experimental condition gth, the corrected expression values by the
transformation to control library size bias,

xi
g j =

ci
g j × 106

sg j
. (2.11)

Other normalization methods such as RPKM and TMM are also applicable here prior to differen-
tial expression analysis (Anders et al., 2013; Bullard et al., 2010; Mortazavi et al., 2008; Robinson
and Oshlack, 2010; Wagner et al., 2012). For a particular gene i,

Mi = log2

 x j
1

x j
2

 , log ratio, (2.12)

Di =
∣∣∣xi

1 − xi
2

∣∣∣ = the absolute value of difference. (2.13)

For all of genes, Mi are Di calculated and a user-defined cutoff threshold value must be established
to classify genes whether tested gene is differential expression representing that M and D are very
likely to be higher values than noise. Otherwise, it is defined as equal expression. The M and D
probability distribution in noise data is computed by contrasting gene counts under the assumption
that all samples are collected from the same condition. First of all, M∗ and D∗ supposedly represent
the random variables describing noise distribution. And Gi denotes a random variable to equal to
1 if gene i is differentially expressed between two different conditions. Otherwise, it equals to 0.
Therefore, the probability to be differential expression is written by,

p
(
Gi = 1|xi

1, x
i
2

)
= p

(
Gi = 1|Mi = mi,Di = di

)
= P

(
|M∗| <

∣∣∣mi
∣∣∣ ,D∗ = di

)
. (2.14)

Accordingly,

p
(
Gi = 0|Mi = mi,Di = di

)
= 1 − Pr

(
|M∗| <

∣∣∣mi
∣∣∣ ,D∗ = di

)
(2.15)

and the ratio of two notations as odds values can be also utilized as the testing of differential expres-
sion.

NOISeq algorithm computes the probability distribution for M∗ and D∗ in an empirical way ob-
taining M and D values for all possible pair of replicates within the same experimental condition for
every gene. Those are further used to generate noise distribution by pooling such M and D values
with the biological intra replicates under the particular condition, JgC2 times are performed to estimate
noise distribution, where Jg is the number of samples in one experimental condition and we assume
this method is run sufficiently when two intra-replicates are available. For computing time to run the
algorithm, a randomly chosen number from JgC2 can be also applied as well. In contrast, when there
are no available replicates, NOISeq method simulates them instead under the assumption that read
counts at genes follow a multinomial distribution. In principle, the standard deviation for simulated
samples is generated randomly from a uniform distribution in the interval,[

(pnr − ν) × sg, (pnr + ν) × sg

]
, (2.16)

where the parameter pnr determines the number of reads of each simulated replicate and is a percent-
age of the SD, sg of the available sample g and ν is a parameter to represent the variability of SD
across samples. Both parameters can be chosen user-specifically and NOISeq allows them to select
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the number of replicates to be simulated. Before doing this procedure, exploratory analysis to se-
lect a proper number of sample size in power test is recommended to perform in advance to increase
confidence of results in differential expression test procedure. In the evaluation of NOISeq method,
its better performance is seen when compared to existing methods, edgeR, DESeq, and baySeq on
the basis of true positive and negative rates. Other parametric methods such as edgeR demonstrated
that large library size data sets produced considerably many false discoveries at low expression levels
and/or with small fold changing differences. Thus, parametric approaches are prune to detect more
genes when more sequencing reads are used. In summary, as more reads are expressed, as more
differential expression calls and noisier data are detected. Improvements of library preparation pro-
tocols, sequencing and mapping precision will aid in effectively identifying differential expression in
transcriptome architecture.

As introduced in the current section, NOISeq has been proposed as an attractive tool in RNA-
seq differential expression analysis by addressing the question how to precisely infer the changes of
expression patterns over samples on the basis of more robust non-parametric technique than existing
methods. It is fundamentally considering several RNA-seq specific features in the method: sequencing
depth that is not warranted to be identical across samples and also, the read length by exploring the re-
lationship among sequencing depth, the distribution of reads, fold change, and differentially expressed
genes. Although it is shown in the better performance in terms of true discovery rates compared to
other parametric methods, this method is also limited to a static method implicating that dynamic
methods taking into account time dependency between samples should be further implemented by
researchers.

2.4. NPEBSeq

A novel framework based on non-parametric empirical Bayesian approach (NPEBSeq) has been in-
troduced by Bi and Davaluri (Bi and Davuluri, 2013). In the method, non-parametric nature has been
incorporated by empirically estimating from the data without any parametric assumption. As an ad-
ditional feature of this methodology, it also enables to estimate differential usage of exons as well as
gene level analysis. Conclusively, NPEBSeq presented a superior performance than others (baySeq,
DESeq, edgeR an NOISeq) based on gold-standard biomarkers in the comparison of percentages on
truly differential expression.

In the methodological rationale for single individual mRNA sample without replicates, let x be
the number of observed reads mapped to a particularly interesting gene to be tested and r be the
expression level of the gene under one condition. X approximately follows a poisson distribution
mean = λ = rdl, where l is the gene length, d is the normalizing constant reflecting the sequencing
depth. Given a prior mixing distribution, G with probability density function g(λ) on λ. The posterior
distribution of λ is

g(λ)
λxe−λ

x!

/
hG(x), (2.17)

where

hG(x) =
∫

λx

x!e−λ
dG(λ) (2.18)

is the G-mixture of poisson.
For the RNA specific property with zero expression level at counts, this method applies a condi-
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tioning on x ≥ 1. To this end, x follows a Q-mixture of zero truncated poisson,

hG(x)
1 − hG(0)

=

∫
λx

x!(eλ − 1)
dQ(λ), (2.19)

where

dQ(λ) =

(
1 − e−λ

)
dG(λ)∫

(1 − e−η) dG(η)
.

Suppose that nx denotes the number of genes with exactly x reads in the sample. The conditional
non-parametric maximum likelihood estimator Q̂ for Q is

Q̂ = arg max
∑
x≥1

nx log fQ(x). (2.20)

The posterior distribution of λ is next given by

λ|x ∼ g
(
λ̂
) λxe−λ

x!

/
hĜ(x), (2.21)

hence empirical bayes estimator for λ is given by

λ̂ = E
(
λ̂|x

)
=

(x + 1)hĜ(x + 1)
hĜ(x)

. (2.22)

The posterior distribution of log(d((λA|xA)/(λB|xB))) for different conditions A and B represents log
fold change (FC) of expression level of a gene. This can be inferred from the assumption that expected
values of log fold change of the majority of genes are zeros,

E
[
log

(
d
λA|xA

λB|xB

)]
= 0. (2.23)

Therefore, differential expression is tested in NPEBSeq by user-defined cutoff value ∆,∣∣∣∣∣∣log
(
d
λA|xA

λB|xB

)∣∣∣∣∣∣ > ∆. (2.24)

When biological intra-replicates are available, let c denote the number of biological replicates for
one condition and assumptions are based on that

xi j ∼ POI(d jθi j),
ei j ∼ Gamma(λi, θ), mean = λi and variance = λiθ,

λi ∼ G such that g(λ) is the pdf of G, (2.25)

where xi j is the number of reads for gene i and replicate j and ei j is the expression index. And λi is the
expression level of gene i under this condition. Q is the scale parameter of Gamma distribution and d j

is the normalizing constant for replicate j. Interestingly, the prior distribution G is estimated by using
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the sample that has the largest data depth under each condition. The joint posterior probability of fold
change for each gene is given by,

λi, e⃗i|x⃗i ∼ g (λi)
c∏

j=1

1

Γ(λi/θ)θ
λi
θ

expi j

(
λi

θ − 1

)
exp

(
−

ei j

θ

(d jei j)xi j e−d jei j

(xi j)!

)

= g (λi)
c∏

j=1

1

Γ(λi/θ)θ
λi
θ

expi j

(
xi j +

λi

θ − 1

)
exp

−ei j

(
1
θ
+ d j

) dxi j

j

(xi j)!

 . (2.26)

NPEBSeq method has been implemented by improving robustness at low expression levels with
highly noise values by borrowing information from the gene expression in the entire sample. An-
other appealing advantage of this method aims at estimation of dispersion by hierarchical Bayesian
model and NPEBSeq extended the differential expression to exon levels. Hereby, the major strength
in this method is robustness that there are no limited assumptions to be defined previously about the
prior distribution and provides the closed form of posterior distribution of fold change.

Let’s take a closer look at a real data application hereafter as shown in the paper. In the evaluation
of NPEBSeq differential expression method, they employed two real data examples using MAQC (Mi-
croArray Quality Control) dataset and NPEBSeq is compared with alternatives, DESeq, baySeq, and
edgeR. The first example is based on MAQC2 Illumina RNAseq data with seven technical replicates
of brain reference and those of UHR RNA samples. From 1,000 genes in the original MAQC project,
the qRT-PCR gold standard benchmark validated differential patterns, 407 genes are as differential
expression and 119 genes as non-differential expression.

In the ROC curves, NPEBSeq obviously outperforms other alternatives in terms of sensitivity and
specificity. Interestingly, they also identified differential usage of exons from RNA-seq data to explore
the significant effect of the RNAi knockdown of pasilla by RNAseq in the Drosophila melanogaster
cell line. The method detected 107 differentially expressed genes under the FDR (false discovery rate)
at 0.1 for the comparison of control and knockdown with four intra-replicates. Moreover, NPEBSeq
detected differential exon usage for 2,370 counting bins for between condition comparison and for
225 counting bins for within condition comparison at FDR = 0.01. In contrast, alternative DEXSeq
method demonstrated much fewer counting bins, 120 as differential expression at FDR = 0.1. In ad-
dition, authors compared overlapped common set of two differential expression methods, NPEBSeq
and DEXSeq, in both ranked lists of exons. As shown in ROC curves in the paper, NPEBSeq pre-
sented better performance than DESeq in terms of true discovery rates both in real data examples and
simulated data sets.

2.5. BitSeq

Lastly, we here review another method, bayseian inference of transcripts from sequencing data (Bit-
Seq) (Glaus et al., 2012). In brief, the differential expression is estimated from the posterior samples
of expression levels from two or more conditions and all available biological intra-replicates. Samples
from the posterior distribution are compared with user-defined threshold value in alteration of expres-
sion levels between conditions. Thus, relative expression is represented by Markov Chain Monte
Carlo (MCMC) samples from the posterior probability distribution of a generative model of the read
counts.

BitSeq analytical pipeline is composed of two main procedures, quantification of transcript ex-
pression and estimation of differential expression. The first component in RNA-seq data analysis is
to quantify expression level of mRNA abundance of transcripts. For the consistency of previously
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mentioned methods, we review the estimation of differential expression part for BitSeq in this study
and the quantification of expression levels of transcripts will be further reviewed with another review
paper which is currently in the preparation. We assume that the logarithm of transcript expression
levels

ym = log θm, (2.27)

where m = 1, . . . , M and θ = (θ1, . . . , θM).
Thus, Equation (2.27) represents transcript expression level. For a condition c in the comparison,

let Rc be replicate datasets the log expression from replicate r and y(cr)
m be distributed according to a

normal distribution with condition mean expression µ(c)
m , normalized by replication specific constant

n(cr) and the precision λ(c)
m ,

y(cr)
m ∼ N

(
µ(c)

m + n(cr),
1

λ(c)
m

)
.

The conditional mean expression is normally distributed

µ(c)
m ∼ N

(
µ(0)

m ,
1

λ(c)
m λ0

)
,

where mean µ(0)
m is empirically calculated from multiple samples and scale parameter λ(c)

m λ0 for pre-
cision. For the conjugate priors and a closed form of posterior probability is given by the following
notations,

p (µm, λm|ym) =
C∏

c=1

Gamma
(
λ(c)

m

∣∣∣∣∣∣ac,
1
bc

)
× N

µ(c)
m

∣∣∣∣∣∣∣∣
µ(0)

m λ0+
∑Rc

r=1

(
y(cr)

m −n(cr)
)

λ0+Rc
,

1

λ(c)
m (λ0+Rc)

 , (2.28)

where

ac = αG +
Rc

2
, bc = βG +

1
2

(µ(0)
m

)2
λ0 +

Rc∑
r=1

(
y(cr)

m − n(cr)
)2 −

(
µ(0)

m λ0 +
∑Rc

r=1

(
y(cr)

m − n(cr)
))2

λ0 + Rc

 .
Through the procedure of MCMC, λm and µm are directly sampled given each pseudo-data vector

ym constructed from the stage 1 MCMC sample. For two comparable conditions, c1 and c2, samples
of µ(c1)

m and µ(c2)
m are used to estimate the probability of expression level o transcript m in condition c1

being greater than the expression level in c2. This step is run by the algorithm that counts the fraction
of samples to hold the criterion that

p
(
µ(c1)

m > µ(c2)
m

∣∣∣∣R)
=

1
N

N∑
n=1

δ
(
µ(c1)

m,n > µ
(c2)
m,n

)
, (2.29)

where n = 1, . . . ,N represents one sample from the above posterior probability for each of N inde-
pendent pseudo-data vectors.

In the evaluation of BitSeq with other existing methods, its performance is comparable with other
competing methods or outperforms DESeq, edgeR, and baySeq in the artificially generated datasets
with pre-defined set of differentially expressed transcripts in terms of true discovery rates in ROC
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curves. The major advantages of this method aim at the calculation of full posterior distribution,
accounting for both technical and biological replicates to compute the posterior distribution of differ-
ential expression between conditions to lead fewer false differential expression (DE) calls. In spite of
such prominent attractive methodological strategies in recent updates, such as, NPEBSeq and BitSeq,
all of introduced methods in the current review have been focused on unified gene level quantification
and static method without the sample dependency structure such as markov property. Investigators
should upgrade current framework in order to incorporate the important RNA-seq specific advanta-
geous feature, isoform diversity that is defined by multiple ways to combine different exons that have
not been able to detect in unified gene level quantification. It is essentially suggesting that those dif-
ferently alternative splicing events and allelic specific expression across different samples, conditions,
and a series of time might play a key role in the clue of aberrant patterns in isoform architecture and
mal-functionality behaviors in intricate regulatory mechanism, especially disease related processes
such as disease progression with condition for each time.

3. Concluding Remarks

We systematically reviewed various detection tools of differential expression analysis by focusing on
Bayesian and non-parametric methods. In the aspect of experimental design setting, that is, the fea-
sibility to more complicated experiments is a critical issue in differential expression analysis. All of
described methods allowed us to analyze more than two groups with intra-replicates except BM-DE.
In terms of position level quantification other than unified gene level, BM-DE hierarchical modeling
approach addressed to the outliers on positions at genes suggesting that single gene level could provide
restricted estimates at expression levels when counts are affected by some of influential extreme values
on positions. Overall, proposed method in this review outperformed other competing parametric meth-
ods in terms of sensitivity and false discovery rates indeed. And more recently, NPEBSeq, NOISeq,
and BitSeq have been proposed as outstanding approaches at static comparative study without regards
to time points. Although NPEBseq has shown better performance than NOISeq, the method does
not explicitly account for RNA-seq specific features, sequencing depth, read distribution, and gene
length. Thus, there is no unanimously best method to be suggested under all of the various situations
in RNA-seq expression profiles. Furthermore, the sophisticatedly comparative study amongst various
methods in a large-scale comparison might need to be further performed in the validation and evalua-
tion of several differential expression methods both in real data application and simulation studies. It
will derive more condensed conclusions in the choice of proper RNA-seq specific differential expres-
sion methods. Along with such pros and cons, importantly, differential expression analysis has been a
commonplace to analyze changes of transcriptional expression profiles over different conditions and
samples in several disease mechanisms and organisms in last decades. We highlighted multiple group
comparative studies in RNA-seq data that has been more recently proposed and gradually more popu-
larly conducted for a short history in this review article (Anders and Huber, 2010; Anders et al., 2013;
Bi and Davuluri, 2013; Bullard et al., 2010; Hardcastle and Kelly, 2010; Lin et al., 2003; Oshlack et
al., 2010; Rehrauer et al., 2013; Robinson et al., 2010; Robinson and Oshlack, 2010; Tarazona et al.,
2011).

While RNA-seq has a couple of advantageous features such as dynamic rages of expression levels,
better quality of sample in terms of reproducibility, identification of isoform architecture and allelic
specific expression, it also has RNA-seq specific inherent biases and errors that should be corrected
prior to differential expression analysis such as 5’ and 3’ UTR bias, GC content bias, different sam-
pling rates and sequencing depth across conditions. In addition, the sample size in RNA-seq is much
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fewer than the number of variables (genes) (Anders et al., 2012; Beretta et al., 2014; Bernard et al.,
2014; Bi and Davuluri, 2013; Bullard et al., 2010; Deng et al., 2011; Glaus et al., 2012; Han and
Jiang, 2014; Hiller et al., 2009; Hiller and Wong, 2013; Howard and Heber, 2010; Hu et al., 2014;
Jiang and Wong, 2009; Kaur et al., 2012; Kim et al., 2012; Kimes et al., 2014; Kumar et al., 2012;
Lee et al., 2011; Leon-Novelo et al., 2014; Lerch et al., 2012; Li et al., 2014; Li et al., 2011; Li
and Jiang, 2012; Ma and Zhang, 2013; Marioni et al., 2008; Mezlini et al., 2013; Mills et al., 2013;
Mortazavi et al., 2008; Nariai et al., 2013; Nariai et al., 2014; Nicolae et al., 2011; Niu et al., 2014;
Oh et al., 2013; Oshlack et al., 2010; Pandey et al., 2013; Patro et al., 2014; Pollier et al., 2013;
Rehrauer et al., 2013; Roberts et al., 2011; Robinson and Oshlack, 2010; Ryan et al., 2012; Safikhani
et al., 2013; Satoh et al., 2014; Shen et al., 2012; Shen et al., 2014; Shi and Jiang, 2013; Skelly et al.,
2011; Suo et al., 2014; Tarazona et al., 2011; Trapnell et al., 2009; Trapnell et al., 2012; Trapnell et
al., 2010; Vardhanabhuti et al., 2013; Vitting-Seerup et al., 2014; Wagner et al., 2012; Wang et al.,
2010a; Wang et al., 2010b; Wang et al., 2013; Wang et al., 2010c; Wu et al., 2011; Yalamanchili et
al., 2014; Young et al., 2010; Zhang et al., 2014; Zhao et al., 2013).

In order to address the artifacts derived from experimental sources, insufficient sample size, and
variability of technical and/or intra-biological replicates, more effective Bayesian and non-parametric
methods depicted with the methodological details in previous section have been developed in so-
phisticated manners in this review. They demonstrated equivalent or improved performance when
compared to other competing alternative methods both in artificial synthetic and real data application.
It implicates that selection of more robust method from the diversity of differential expression tools is
important to effectively reduce false discovery rates and provide more reliable biological findings.

4. Closing Remarks

In this review, we learned several empirical Bayesian and non-parametric methods to incorporate
RNA-seq specific features by focusing on gene level analytical strategies. In conventional microarray
platform, many Bayesian and non-parametric methods have been also popularly introduced. They has
been performed analogously with better performance in the aspects of power of detection and false
discovery rates in the situation of small samples, large number of probes and genes with noisy sets
(Aryee et al., 2009; Gao and Song, 2005; Gerns Storey et al., 2014; Ginsberg et al., 2010; Lin et al.,
2003; Nishiu et al., 2002; Stegle et al., 2010; Zhao et al., 2008). More recently, sequencing based
platforms have revolutionized transcriptome studies by replacing arrays with RNA-seq. One of major
attractive nature of RNA-seq enabled to identify isoform diversity that is created by varying selective
ways in exons and to detect allelic imbalance from different transcriptional rates in deep sequencing
(Leon-Novelo et al., 2014; Pandey et al., 2013).

In human genes, it is well known that immense amount of gene annotations is associated with these
biological phenomena, that is, more than 90% of genes undergo corresponding isoforms. And for an
extreme case of gene, a gene has ∼ 1,000 isoform splicing events, suggesting that those isoforms with
variability might be more closely related with disease and developmental processes as they generate
different protein structure and functionalities, respectively (Beretta et al., 2014; Bernard et al., 2014;
Deng et al., 2011; Hiller et al., 2009; Hiller and Wong, 2013; Howard and Heber, 2010; Hu et al.,
2014; Jiang and Wong, 2009; Katz et al., 2010; Kaur et al., 2012; Kimes et al., 2014; Lerch et al.,
2012; Li et al., 2011; Li and Jiang, 2012; Ma and Zhang, 2013; Mezlini et al., 2013; Mills et al.,
2013; Nariai et al., 2013; Nariai et al., 2014; Nicolae et al., 2011; Niu et al., 2014; Patro et al.,
2014; Rehrauer et al., 2013; Safikhani et al., 2013; Shi and Jiang, 2013; Suo et al., 2014; Trapnell
et al., 2010; Vardhanabhuti et al., 2013; Wang et al., 2010b; Wang et al., 2010c; Wu et al., 2011;
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Yalamanchili et al., 2014; Zhang et al., 2014).

More importantly, differential expression at gene levels are not guaranteed to be identical cas-
cade patterns either at isoforms or exons, vice versa. NOISeq and NPEBSeq presented exon-specific
quantification and analysis as well as gene levels, whereas other methods described in the previous
section are all focused on genes. More complex experimental designs have been feasible and gradu-
ally showing popularity in clinical application. For example, more complicated experimental designs
are widely conducted in the format of multi-series of time course data.

In general, a multi-series of time course data contain biological external conditions (e.g. drug
treatments) at each time point to address a specific question in disease progression. Taken together,
recent studies emphasized that differential expression focusing on gene levels might be a limited
approach (Oh et al., 2013; Stegle et al., 2010). And also, as investigators tend to easily overlook the
initial experimental design and pre-processing procedures prior to differential expression, as well as
more robust and powerful differential expression method, additional critical checking points should be
considered in RNA-seq data analysis as given in the following: importance of explorative analysis for
diagnosis of samples, proper choice of replicates and samples for well-balanced experimental designs,
more deeply sequenced profiles and continuous development of robust statistical methodologies for
accurate quantification and differential analysis at genes, transcripts, isoforms, and exons to better
understand cellular and molecular complexity (Cumbie et al., 2011; Gatto et al., 2014; Goncalves et
al., 2011; Gupta et al., 2012; Hill et al., 2013; Knowles et al., 2013; Kroll et al., 2014; Lin et al.,
2012; Martin et al., 2010; Zhang et al., 2012).
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