• 제목/요약/키워드: species-specificity

검색결과 306건 처리시간 0.027초

Development of a multiplex PCR to identify Salmonella, Leptospira and Brucella species in tissue samples

  • Truong, Quang Lam;Yoon, Byung-Il;Hahn, Tae-Wook
    • 대한수의학회지
    • /
    • 제52권2호
    • /
    • pp.75-82
    • /
    • 2012
  • We have developed and optimized a multiplex polymerase chain reaction (mPCR) for simultaneous detection of Brucella, Salmonella and Leptospira with high sensitivity and specificity. Three pairs of oligonucleotide primers were designed to specifically amplify the targeted genes of Salmonella, Leptospira and Brucella species with sizes of 521, 408 and 223 bp, respectively. The mPCR did not produce any nonspecific amplification products when tested against 15 related species of bacteria. The sensitivity of the mPCR was 100 fg for Brucella and 1 pg for both Salmonella and Leptospira species. In the field application, kidney, liver and spleen were collected from wild rats and stray cats and examined by mPCR. The high specificity and sensitivity of this mPCR assay provide a valuable tool for diagnosis and for the simultaneous and rapid detection of three zoonotic bacteria that cause disease in both humans and animals. Therefore, this assay could be a useful alternative to the conventional method of culture and single PCR for the detection of each pathogen.

Species Identification of the Tropical Abalone (Haliotis asinina, Haliotis ovina, and Haliotis varia) in Thailand Using RAPD and SCAR Markers

  • Klinbunga, Sirawut;Amparyup, Piti;Leelatanawit, Rungnapa;Tassanakajon, Anchalee;Hirono, Ikuo;Aoki, Takashi;Jarayabhand, Padermsak;Menasveta, Piamsak
    • BMB Reports
    • /
    • 제37권2호
    • /
    • pp.213-222
    • /
    • 2004
  • A randomly amplified polymorphic DNA (RAPD) analysis was used to identify the species- and population-specific markers of abalone; Haliotis asinina, H. ovina, and H. varia in Thai waters. Fifteen species-specific and six population-specific RAPD markers were identified. In addition, an 1650 bp band (UBC195) that was restricted to H. ovina from the Gulf of Thailand (east) was also found. All of the specific RAPD markers were cloned and sequenced. Twenty pairs of primers were designed and specificity-tested (N = 12 and 4 for target and non-target species, respectively). Seven primer pairs (CUHA1, 2, 4, 11, 12, 13, and 14) were specifically amplified by H. asinina DNA, whereas a single pair of primers showed specificity with H. ovina (CUHO3) and H. varia (CUHV1), respectively. Four primer pairs, including CUHA2, CUHA12, CUHO3, and CUHV1, were further examined against 216 individuals of abalone (N = 111, 73, and 32, respectively). Results indicated the species-specific nature of all of them, except CUHO3, with the sensitivity of detection of 100 pg and 20 pg of the target DNA template for CUHA2 and CUHA12 and CUHV1, respectively. The species-origin of the frozen, ethanol-preserved, dried, and boiled H. asinina specimens could also be successfully identified by CUHA2.

Comparative Ultrastructures of the Fertilized Egg Envelopes in Nothobranchius foerschi and Nothobranchius rachovii, Nothobranchiidae, Teleostei

  • Kwon, Ohyun;Sohn, Joon Hyung;Chung, Dong Yong;Kim, Eun Jin;Kim, Dong Heui
    • Applied Microscopy
    • /
    • 제47권2호
    • /
    • pp.70-74
    • /
    • 2017
  • In the case of genus Nothobranchius, Nothobranchiidae, the morphology of fertilized eggs and ultrastructures of fertilized egg envelopes have been reported in only two fishes. Therefore it is hard for sure to these morphological characteristics show genus specificity because of lower research samples. So, we studied the morphology of fertilized egg, and compared the ultrastructures of outer surface, micropyle, and section of fertilized egg envelopes under the light and electron microscopes from the other two species, Nothobranchius foerschi and Nothobranchius rachovii, Nothobranchiidae to find out whether these structures have the species specificity or not. Both fertilized eggs were spherical, demersal and adhesive, and have a large oil droplet. The adhesive whip-like structures were distributed on the outer surface of egg envelope, and a micropyle located on the animal pole. The fertilized egg envelope consisted of two distinct layers: an outer electron-dense layer with adhesive structures and an inner lamellae layer in both species. The external shapes of fertilized egg and ultrastuctures of outer surface, micropyle, and section of fertilized egg envelope have same structure including results before. Our data indicate that these morphological characteristics of fertilized egg and fertilized egg envelope show genus Nothobranchius specificity.

Generation and characterization of a monoclonal antibody with high species-specificity to Schistosoma japonicum glutathione S-transferase

  • Kim, Jung-Hwan;Park, Jung-Hyun;Ju, Sung-Kyu;Lee, Myung-Kyu;Kim, Kil Lyong
    • IMMUNE NETWORK
    • /
    • 제1권3호
    • /
    • pp.187-195
    • /
    • 2001
  • The expression of recombinant proteins fused to 26 kDa glutathione S-transferase (GST) extracted from Schistosoma japonicum represents an attractive system for purifiying proteins of interest in a single step using GST-affinity chromatography. In addition, the GST-tag is used conveniently for detecting fused proteins since its high solubility as well as its relatively small size rarely interferes with the biological activity of the fused protein. In this regard, the GST system is frequently applied for tracing fusion proteins in both prokaryotic and eukaryotic cells to elucidate the physiological interactions and functional compartments of proteins. To provide a further tool in analyzing GST-fusion proteins, a new monoclonal antibody, with a high specificity to the S. japonicum GST was produced. Methods: BALB/c mice were immunized both with recombinant S. japonicum GST proteins, and by the fusion of splenocytes from these mice with myeloma cells. From this, a new anti -GST monoclonal antibody, termed SARAH, was generated. The specificity and reactivity of this antibody was confirmed by ELISA and by Western blot analysis. Results: SARAH showed a high reactivity to recombinant GST and GST fusion protein but not with native mammalian GST proteins as derived from other species including humans, cows, rabbits and rats. The applicability of SARAH was further demonstrated by confocal laser scanning microscopy, where GST proteins that were expressed transiently in mouse fibroblast cells, were specifically detected without interference of endogenous GST. Conclusion: SARAH is new monoclonal antibody with a high specificity to recombinant GST proteins but not to endogenous GST in mammalian cells.

  • PDF

물달개비의 생물학적 방제인자 물달개비바구미의 생활사 및 기주특이성 (Life Cycle and Host Specificity of Tanysphyrus (Tanysphyroides) major Roelofs (Coleoptera : Curculionidae), a Possible Candidate Agent for the Biological Control of Monochoria vaginalis var. plantaginea)

  • 박진영;박재읍;이인용;권오석;박종균
    • 한국잡초학회지
    • /
    • 제31권1호
    • /
    • pp.103-111
    • /
    • 2011
  • 물달개비는 한국의 논에서 문제되는 난방제 잡초중의 하나이다. 물달개비의 생물학적 방제 인자로 물달개비바구미를 선발하였다. 생물학적 방제에 이용하기 위해 2006년과 2007년 계대사육을 실시하여 형태적, 생태적 특징을 조사하였다. 이 종은 1년에 한세대만 경과하며 성충으로 월동하고, 성충은 6월 하순부터 9월 하순까지 발생한다. 물달개비바구미는 알에서 성충까지 $22{\pm}0.7$일이 소요된다. 주요 농작물과 수생식물 60종을 대상으로 기주특이성을 조사 결과 물달개비의 생물학적 방제 곤충으로서의 가능성을 보였다.

새우난초와 은대난초 뿌리에서 분리한 내생균의 다양성 (Diversity of Endophytic Fungi Associated with Roots of Calanthe discolor and Cephalanthera longibracteata in Korea)

  • 이봉형;엄안흠
    • 한국균학회지
    • /
    • 제46권4호
    • /
    • pp.427-435
    • /
    • 2018
  • 본 연구에서는 충남, 제주, 경남, 충북 등에서 새우난초(Calanthe discolor)와 은대난초(Cephalanthera longibracteata)의 뿌리를 채취하여 표면살균한 후 내생균을 순수분리 하였다. 분리된 내생균의 형태학 특징을 관찰하고 internaltranscribed spacer (ITS) rDNA영역의 염기서열을 ITS1F와 ITS4프라이머를 이용하여 분석하였다. 서로 다른 지역에서 채집한 새우난초와 은대난초이지만, 공통적으로 Leptodontidium orchidcola가 높은 상대수도와 빈도를 나타냈으며, 내생균류의 군집차이를 분석할 결과, 지역적 차이보다는 숙주에 의한 차이가 더 큰 영향을 미치는 것으로 나타났다.

Development of Quantitative Real-Time PCR Primers for Detection of Streptococcus sobrinus

  • Park, Soon-Nang;Kook, Joong-Ki
    • International Journal of Oral Biology
    • /
    • 제41권3호
    • /
    • pp.149-154
    • /
    • 2016
  • The purpose of this study was to develop Streptococcus sobrinus-specific qPCR primers based on the nucleotide sequence of the RNA polymerase ${\beta}-subunit$ gene (rpoB). The specificity of the primers was determined by conventional polymerase chain reaction (PCR) with 12 strains of S. sobrinus and 50 strains (50 species) of non-S. sobrinus bacteria. The sensitivity of the primers was determined by quantitative real-time PCR (qPCR) with serial dilutions of the purified genomic DNAs (40 ng to 4 fg) of S. sobrinus ATCC $33478^T$. The specificity data showed that the S. sobrinus-specific qPCR primers (RTSsob-F4/RTSsob-R4) detected only the genomic DNAs of S. sobrinus strains with a detection limit of up to 4 fg of S. sobrinus genomic DNA. Our results suggest that the RTSsob-F4/RTSsob-R4 primers are useful in detecting S. sobrinus with high sensitivity and specificity for epidemiological studies of dental caries..

한국산 미꾸리과 어류 4종의 난모세포의 부착막 (Adhesive Membranes of Oocyte in Four Loaches (Pisces: Cobitidae) of Korea)

  • 김익수;박종영
    • 한국동물학회지
    • /
    • 제39권2호
    • /
    • pp.198-206
    • /
    • 1996
  • Adhesive membranes in the oocvtes of four loach fishes of Korea were investigated by light and electron microscopes to clarify the structural characteristics among the species. In the vitellosenic stage the adhesive membranes of oocvtes could be classified into two forms as follows: 1) fence-shaped form of Nemacheilus yoni and 2) non-adhesive membranous form of Misgurnus anguillicoudotus, M. Mizolepis, and Lefuo costuto. The adhesive membranes of oocvtes in the loach fishes showed a species specificity with reference to their habitats and spawning properties.

  • PDF

Development of a Plastid DNA-Based Maker for the Identification of Five Medicago Plants in South Korea

  • Kim, Il Ryong;Yoon, A-Mi;Lim, Hye Song;Lee, Sunghyeon;Lee, Jung Ro;Choi, Wonkyun
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • 제3권4호
    • /
    • pp.212-220
    • /
    • 2022
  • DNA markers have been studied and used intensively to identify plant species based on molecular approaches. The genus Medicago belongs to the family Fabaceae and contains 87 species distributed from the Mediterranean to central Asia. Five species of Medicago are known to be distributed in South Korea; however, their morphological characteristics alone cannot distinguish the species. In this study, we analyzed the phylogenetic relationships using collected five species of Medicago from South Korea and 44 taxa nucleotide information from NCBI. The constructed phylogenetic tree using gibberellin 3-oxidase 1 and tRNALys (UUU) to maturase K gene sequences showed the monophyly of the genus Medicago, with five species each forming a single clade. These results suggest that there are five species of Medicago distributed in South Korea. In addition, we designed polymerase chain reaction primers for species-specific detection of Medicago by comparing the plastid sequences. The accuracy of the designed primer pairs was confirmed for each Medicago species. The findings of this study provide efficient and novel species identification methods for Medicago, which will assist in the identification of wild plants for the management of alien species and living modified organisms.

Development of Quantitative Real-Time PCR Primers for the Detection of Aggregatibacter actinomycetemcomitans

  • Park, Soon-Nang;Park, Jae-Yoon;Kook, Joong-Ki
    • International Journal of Oral Biology
    • /
    • 제36권1호
    • /
    • pp.1-6
    • /
    • 2011
  • The purpose of this study was to develop species-specific real-time quantitative PCR (RT-qPCR) primers for use in the detection of Aggregatibacter actinomycetemcomitans. These primers were designed based on the nucleotide sequences of the RNA polymerase ${\beta}$-subunit gene (rpoB). We assessed the specificity of the primers against nine strains of A. actinomycetemcomitans, eight strains (three species) of the Haemophilus genus, and 40 strains of 40 other oral bacterial species. Primer sensitivity was determined by testing serial dilutions of the purified genomic DNAs of A. actinomycetemcomitans ATCC $33384^T$. Our data reveal that we had obtained species-specific amplicons for all of the tested A. actinomycetemcomitans strains, and that none of these amplicons occurred in any of the other species. Our PCR protocol proved able to detect as little as 2 fg of A. actinomycetemcomitans chromosomal DNA. Our findings suggest that these qRT-PCR primers are suitable for application in epidemiological studies.