• Title/Summary/Keyword: species barrier

Search Result 159, Processing Time 0.033 seconds

Protective Effects of a Novel Probiotic Strain of Lactobacillus plantarum JSA22 from Traditional Fermented Soybean Food Against Infection by Salmonella enterica Serovar Typhimurium

  • Eom, Jeong Seon;Song, Jin;Choi, Hye Sun
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.4
    • /
    • pp.479-491
    • /
    • 2015
  • Lactobacillus species have been shown to enhance intestinal epithelial barrier function, modulate host immune responses, and suppress the growth of pathogenic bacteria, yeasts, molds, and viruses. Thus, lactobacilli have been used as probiotics for treating various diseases, including intestinal disorders, and as biological preservatives in the food and agricultural industries. However, the molecular mechanisms used by lactobacilli to suppress pathogenic bacterial infections have been poorly characterized. We previously isolated Lactobacillus plantarum JSA22 from buckwheat sokseongjang, a traditional Korean fermented soybean food, which possessed high enzymatic, fibrinolytic, and broad-spectrum antimicrobial activity against foodborne pathogens. In this study, we investigated the effects of L. plantarum JSA22 on the growth of S. Typhimurium and S. Typhimurium-induced cytotoxicity by stimulating the host immune response in intestinal epithelial cells. The results showed that coincubation of S. Typhimurium and L. plantarum JSA22 with intestinal epithelial cells suppressed S. Typhimurium infection, S. Typhimurium-induced NF-κB activation, and IL-8 production, and lowered the phosphorylation of both Akt and p38. These data indicated that L. plantarum JSA22 has probiotic properties, and can inhibit S. Typhimurium infection of intestinal epithelial cells. Our findings can be used to develop therapeutic and prophylactic agents against pathogenic bacteria.

Ab Initio Study on the Thermal Decomposition of CH3CF2O Radical

  • Singh, Hari Ji;Mishra, Bhupesh Kumar;Gour, Nand Kishor
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.12
    • /
    • pp.2973-2978
    • /
    • 2009
  • The decomposition reaction mechanism of $CH_3CF_2O$ radical formed from hydroflurocarbon, $CH_3CHF_2$ (HFC-152a) in the atmosphere has been investigated using ab-initio quantum mechanical methods. The geometries of the reactant, products and transition states involved in the decomposition pathways have been optimized and characterized at DFT-B3LYP and MP2 levels of theories using 6-311++G(d,p) basis set. Calculations have been carried out to observe the effect of basis sets on the optimized geometries of species involved. Single point energy calculations have been performed at QCISD(T) and CCSD(T) level of theories. Out of the two prominent decomposition channels considered viz., C-C bond scission and F-elimination, C-C bond scission is found to be the dominant path involving a barrier height of 12.3 kcal/mol whereas the F-elimination path involves that of a 28.0 kcal/mol. Using transition-state theory, rate constant for the most dominant decomposition pathway viz., C-C bond scission is calculated at 298 K and found to be 1.3 ${\times}$ 10$^4s{-1}$. Transition states are searched on the potential energy surfaces involving both decomposition channels and each of the transition states are characterized. The existence of transition states on the corresponding potential energy surface are ascertained by performing Intrinsic Reaction Coordinate (IRC) calculation.

Theoretical Study on the Mechanism of the Addition Reaction between Cyclopropenylidene and Formaldehyde

  • Tan, Xiaojun;Li, Zhen;Sun, Qiao;Li, Ping;Wang, Weihua
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.6
    • /
    • pp.1934-1938
    • /
    • 2012
  • The reaction mechanism between cyclopropenylidene and formaldehyde has been systematically investigated employing the MP2/6-311+$G^*$ level of theory to better understand the cyclopropenylidene reactivity with carbonyl compound. Geometry optimization, vibrational analysis, and energy property for the involved stationary points on the potential energy surface have been calculated. Energies of all the species are further corrected by the CCSD(T)/6-311+$G^*$ single-point calculations. It was found that one important reaction intermediate (INTa) has been located firstly $via$ a transition state (TSa). After that, the common intermediate (INTb) for the two pathways (1) and (2) has been formed $via$ TSb. At last, two different products possessing three- and four-membered ring characters have been obtained through two possible reaction pathways. In the reaction pathway (1), a three-membered ring alkyne compound has been obtained. As for the reaction pathway (2), it is the formation of the four-membered ring conjugated diene compound. The energy barrier of the ratedetermining step of pathway (1) is lower than that of the pathway (2), and the ultima product of pathway (2) is more stable than that of the pathway (1).

Noise Attenuation by Vegetation (식생에 의한 소음감쇄 효과)

  • 박달곤;김용식
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.23 no.2
    • /
    • pp.205-212
    • /
    • 1995
  • The effects of noise attenuation among bare land, grassland, dominated broad-leaved (Quercus acutissima Carruth) and dominated coniferous forest (Pignus rigid Mill.) were studied For this study, the field experiment was carried out at playground, orchard grass, and school forest in Yeungnam University, Kyongsan. Sound levels of 500, 630, 800, 1,000, 1,250, 1,600, 2,000, 2,500 and 3,150 Hz, respectively, were projected into the vegetation, and the transmitted levels of sound were recorded at the distances of 1, 5, 10, 20, 30 and 50m, respectively, from the sound source. Both dominated coniferous forest (Pignus riged Mill.) and broad-leaved forest (Quercus acutissima Carruth ) are the more effective than grassland in the rates of attenuation. It is expected that dominated coniferous forest will be the more effective to attenuate sound love교 than dominated broad-leaved forest. In the low frequencies such as 500 and 630 Hz, grassland showed the more effective to attenuate sound levels than forests, while in the high frequency such as 3,150 Hz, the forests are the more effective to attenuate sound levels than grassland The present results suggested that it is the more effective to establish the tree belt for a sound barrier, with dominated coniferous tree species in the upper layer and herbaceous vegetation in the lower layer.

  • PDF

Probiotics in the Prevention and Treatment of Postmenopausal Vaginal Infections: Review Article

  • Kim, Jun-Mo;Park, Yoo Jin
    • Journal of Menopausal Medicine
    • /
    • v.23 no.3
    • /
    • pp.139-145
    • /
    • 2017
  • Bacterial vaginosis (BV) and complicated vulvovaginal candidiasis (VVC) are frequently occurring vaginal infections in postmenopausal women, caused by an imbalance in vaginal microflora. Postmenopausal women suffer from decreased ovarian hormones estrogen and progesterone. A normal, healthy vaginal microflora mainly comprises Lactobacillus species (spp.), which act beneficially as a bacterial barrier in the vagina, interfering with uropathogens. During premenopausal period, estrogen promotes vaginal colonization by lactobacilli that metabolizing glycogen and producing lactic acid, and maintains intravaginal health by lowering the intravaginal pH level. A lower vaginal pH inhibits uropathogen growth, preventing vaginal infections. Decreased estrogen secretion in postmenopausal women depletes lactobacilli and increases intravaginal pH, resulting in increased vaginal colonization by harmful microorganisms (e.g., Enterobacter, Escherichia coli, Candida, and Gardnerella). Probiotics positively effects on vaginal microflora composition by promoting the proliferation of beneficial microorganisms, alters the intravaginal microbiota composition, prevents vaginal infections in postmenopausal. Probiotics also reduce the symptoms of vaginal infections (e.g., vaginal discharge, odor, etc.), and are thus helpful for the treatment and prevention of BV and VVC. In this review article, we provide information on the intravaginal mechanism of postmenopausal vaginal infections, and describes the effectiveness of probiotics in the treatment and prevention of BV and VVC.

Swelling and hydraulic characteristics of two grade bentonites under varying conditions for low-level radioactive waste repository design

  • Chih-Chung Chung;Guo-Liang Ren;I-Ting Chen;Che-Ju, Cuo;Hao-Chun Chang
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1385-1397
    • /
    • 2024
  • Bentonite is a recommended material for the multiple barriers in the final disposal of low-level radioactive waste (LLW) to prevent groundwater intrusion and nuclear species migration. However, after drying-wetting cycling during the repository construction stage and ion exchange with the concrete barrier in the long-term repository, the bentonite mechanical behaviors, including swelling capacity and hydraulic conductivity, would be further influenced by the groundwater intrusion, resulting in radioactive leakage. To comprehensively examine the factors on the mechanical characteristics of bentonite, this study presented scenarios involving MX-80 and KV-1 bentonites subjected to drying-wetting cycling and accelerated ion migration. The experiments subsequently measured free swelling, swelling pressure, and hydraulic conductivity of bentonites with intrusions of seawater, high pH, and low pH solutions. The results indicated that the solutions caused a reduction in swelling volume and pressure, and an increase in hydraulic conductivity. Specifically, the swelling capability of bentonite with drying-wetting cycling in the seawater decreased significantly by 60%, while hydraulic conductivity increased by more than three times. Therefore, the study suggested minimizing drying-wetting cycling and preventing seawater intrusion, ensuring a long service life of the multiple barriers in the LLW repository.

Niche characterization of the tree species of genus Ophiura (Echinodermata, Ophiuroidea) in Korean waters, with special emphasis on the distribution of Ophiura sarsi vadicola Dja (한국산 빗살거미불가사리 3종의 서식처 지위- 특히 Ophiura sarsi vadicola Djakonov의 분포를 중심으로)

  • 홍재상;유재원
    • 한국해양학회지
    • /
    • v.30 no.5
    • /
    • pp.442-457
    • /
    • 1995
  • The relationships of environmental factors to the distribution patterns of the three species of ophiuroids, Ophiura kinbergi, O. sarsi and ). sarsi vadicola from Yellow Sea southeast seas and East Sea of Korea were studied to characterize their habitual niches. These three species chosen for study illustrated distinct niche and patterns according to their various preferences mainly for bottom water temperature, bottom water salinity and depth from seven environmental variables which were depth, bottom water temperature and salinity, density, bottom water oxygen content, grain size of the surface sediment, and sediment sorting coefficient. The results of habitat niche study mainly dealing with O. sarsi vadicola suggested that the optimum habitat rages were approximately 6$^{\circ}C$∼10$^{\circ}C$ in bottom temperature and 31%∼33.5% in bottom water salinity which also corresponded with the characteristic ranges of Yellow Sea Bottom Cold Water and higher probabilities of occurrence (more than 70%) were found in depth ranging from 100 to 200 m. In addition, the habitats of O. kinbergi and O. sarsi were compared with that of O. sarsi vadicola. Their ranges of habitat niches were found to have different niches in physical space of bottom water temperature, bottom water salinity and depth. Based on the distribution pattern of O. sarsi vadicola in the Yellow Sea, the ecological barrier which confined the distribution of benthic macro-invertebrates in southern Yellow Sea was determined to be the Yellow Sea Warm Current (approximately 34% < and 18$^{\circ}C$ in December) which occurs between 33$^{\circ}$ and 34$^{\circ}$N of southern Yellow Sea in winter time.

  • PDF

Faunal Composition and Spatial Distributions of Macrozoobenthos in the Tidal Flat of the Nakdong River Estuary, Korea (낙동강 하구 모래갯벌에 서식하는 대형저서동물의 군집구조와 분포양상)

  • Seo, Jin-Young;Choi, Jin-Woo;Shin, Kyoungsoon
    • Journal of Marine Life Science
    • /
    • v.5 no.2
    • /
    • pp.81-91
    • /
    • 2020
  • This study was conducted to find the faunal composition and distribution patterns of macrobenthos where the sand tidal flat around barrier island at Nakdong River estuary in May, 2016 and 2017. The number of species ranged from 31 to 39, and density was from 789 to 1,644 ind.m-2 during the study period in the three tidal flats. The number of species and density were the highest in the tidal flat of Shinja-do and Jinwoo-do, respectively. The dominant species were Gammaridae unid. in amphipods of crustacea, Scoletoma heteropoda, Scoloplos armiger, Heteromastus filiformis, Prionospio japonica in polychaeta and Batillaria cumingii, Laternula marilina in mollusks from the three tidal flats. The proportion of carnivores such as crustacea and mollusks was higher in the upper part of the tidal flat, and polychaetes of deposit feeders, dominated in the middle and lower tidal flat. Overall, the intertidal macrobenthic communities in the study area showed a high proportion of carnivores. However, the sites where the mud content is high such as muddy sand sites, they showed a higher proportion of surface deposit feeders belonging to tube-builders which contribute to sediment stability. From this study, it seemed that the macrobenthic fauna of the sandy tidal flat at the Nakdong River estuary showed a similar fauna composition and zonal distribution patterns from those in other sandy tidal flats in Korea.

Characteristics of Herbaceous Vegetation Structure of Barren Land of Southern Limit Line in DeMilitarized Zone (비무장지대 남방한계선 불모지 초본식생구조 특성)

  • Yu, Seung-Bong;Kim, Sang-Jun;Kim, Dong-Hak;Shin, Hyun-Tak;Bak, Gippeum
    • Korean Journal of Environment and Ecology
    • /
    • v.35 no.2
    • /
    • pp.135-153
    • /
    • 2021
  • The demilitarized zone (DMZ) is a border barrier with 248 kilometers in length and about 4 kilometers in width crossing east to west to divide the Korean Peninsula about in half. The boundary at 2 kilometers to the south is called the southern limit line. The DMZ has formed a unique ecosystem through a natural ecological succession after the Armistice Agreement and has high conservation value. However, the use of facilities for the military operation and the unchecked weeding often damage the areas in the vicinities of the southern limit line's iron-railing. This study aimed to prepare basic data for the restoration of damaged barren vegetation. As a result of classifying vegetation communities based on indicator species, 10 communities were identified as follows: Duchesnea indica Community, Hosta longipes Community, Sedum kamtschaticum-Sedum sarmentosum Community, Potentilla anemonefolia Community, Potentilla fragarioides var. major Community, Prunella vulgaris var. lilacina Community, Dendranthema zawadskii var. latilobum-Carex lanceolata Community, Dendranthema zawadskii Community, Plantago asiatica-Trifolium repens Community, and Ixeris stolonifera-Kummerowia striata Community. Highly adaptable species can characterize vegetation in barren areas to environment disturbances because artificial disturbances such as soil erosion, soil compaction, topography change, and forest fires caused by military activities frequently occur in the barren areas within the southern limit line. Most of the dominant species in the communities are composed of plants that are commonly found in the roads, roadsides, bare soil, damaged areas, and grasslands throughout South Korea. Currently, the vegetation in barren areas in the vicinities of the DMZ is in the early ecological succession form that develops from bare soil to herbaceous vegetation. Since dominant species distributed in barren land can grow naturally without special maintenance and management, the data can be useful for future restoration material development or species selection.

Effect of $H_2O_2$ on Alveolar Epithelial Barrier Properties (폐상피세포 장벽에 대한 $H_2O_2$의 영향)

  • Suh, Duk-Joon;Cho, Se-Heon;Kang, Chang-Woon
    • Tuberculosis and Respiratory Diseases
    • /
    • v.40 no.3
    • /
    • pp.236-249
    • /
    • 1993
  • Background: Among the injurious agents to which the lung airspaces are constantly exposed are reactive species of oxygen. It has been widely believed that reactive oxygen species may be implicated in the etiology of lung injuries. In order to elucidated how this oxidant causes lung cell injury, we investigated the effects of exogenous $H_2O_2$ on alveolar epithelial barrier characteristics. Methods: Rat type II alveolar epithelial cells were plated onto tissue culture-treated polycarbonate membrane filters. The resulting confluent monolayers on days 3 and 4 were mounted in a modified Ussing chamber and bathed on both sides with HEPES-buffered Ringer solution. The changes in short-circuit current (Isc) and monolayer resistance (R) in response to the exogenous hydroperoxide were measured. To determine the degree of cellular catalase participation in protection against $H_2O_2$ injury to the barrier, experiments were repeated in the presence of 20 mM aminotriazole (ATAZ, an inhibitor of catalase) in the same bathing fluid as the hydroperoxide. Results: These monolayers have a high transepithelial resistance (>2000 ohm-$cm^2$) and actively transport $Na^+$ from apical fluid. $H_2O_2$(0-100 mM) was then delivered to either apical or basolateral fluid. Resulting indicated that $H_2O_2$ decreased Isc and R gradually in dose-dependent manner. The effective concentration of apical $H_2O_2$ at which Isc (or R) was decreased by 50% at one hour ($ED_{50}$) was about 4 mM. However, basolateral $H_2O_2$ exposure led to $ED_{50}$ for Isc (and R) of about 0.04 mM. Inhibition of cellular catalase yielded $ED_{50}$ for Isc (and R) of about 0.4 mM when $H_2O_2$ was given apically, while $ED_{50}$ for basolateral exposure to $H_2O_2$ did not change in the presence of ATAZ. The rate of $H_2O_2$ consumption in apical and basolateral bathing fluids was the same, while cellualr catalase activity rose gradually with time in culture. Conclusion: Our data suggest that basolateral $H_2O_2$ may affect directly membrane component (e.g., $Na^+,\;K^+$-ATPase) located on the basolateral cell surface. Apical $H_2O_2$, on the other hand, may be largely degraded by catalase as it passes through the cells before reaching these membrane components. We conclude that alveolar epithelial barrier integrity as measured by Isc and R are compromised by $H_2O_2$ being relatively sensitive to basolateral (and insensitive to apical) $H_2O_2$.

  • PDF