• Title/Summary/Keyword: special moment frame

Search Result 84, Processing Time 0.019 seconds

Cyclic Seismic Testing of Cruciform Concrete-Filled U-Shape Steel Beam-to-H Column Composite Connections (콘크리트채움 U형합성보-H형강기둥 십자형 합성접합부의 내진성능)

  • Park, Chang-Hee;Lee, Cheol-Ho;Park, Hong-Gun;Hwang, Hyeon-Jong;Lee, Chang-Nam;Kim, Hyoung-Seop;Kim, Sung-Bae
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.4
    • /
    • pp.503-514
    • /
    • 2011
  • In this research, the seismic connection details for two concrete-filled U-shape steel beam-to-H columns were proposed and cyclically tested under a full-scale cruciform configuration. The key connecting components included the U-shape steel section (450 and 550 mm deep for specimens A and B, respectively), a concrete floor slab with a ribbed deck (165 mm deep for both specimens), welded couplers and rebars for negative moment transfer, and shear studs for full composite action and strengthening plates. Considering the unique constructional nature of the proposed connection, the critical limit states, such as the weld fracture, anchorage failure of the welded coupler, local buckling, concrete crushing, and rebar buckling, were carefully addressed in the specimen design. The test results showed that the connection details and design methods proposed in this study can well control the critical limit states mentioned above. Especially, the proposed connection according to the strengthening strategy successfully pushed the plastic hinge to the tip of the strengthened zone, as intended in the design, and was very effective in protecting the more vulnerable beam-to-column welded joint. The maximum story drift capacities of 6.0 and 6.8% radians were achieved in specimens A and B, respectively, thus far exceeding the minimumlimit of 4% radians required of special moment frames. Low-cycle fatigue fracture across the beam bottom flange at a 6% drift level was the final failure mode of specimen A. Specimen B failed through the fracture of the top splice plate of the bolted splice at a very high drift ratio of 8.0% radian.

Behavior of Non-seismic Detailed Low-Rise R/C Exterior Beam-to-Column Joints Subjected to Cyclic Loading (반복 하중을 받는 비내진 저층 RC 구조물의 외부 기둥-보 접합부의 거동)

  • Sur, Man-Sik;Chang, Chun-Ho;Kim, Young-Moon
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.1
    • /
    • pp.109-118
    • /
    • 1999
  • Seismic design code has been performed since 1988 in Korea, so it has not been applied to low-rise reinforced concrete buildings which had been built before 1988. Those building have been designed only for gravity loads based on non-seismic code, Therefore, even minor earthquake occurred, those buildings might have serious damages. In this paper, to investigate the behavior of low-rise reinforced concrete moment resisting frame which had been built in according to the building code of Korea that had been published before 1988, two type of 1/2 scaled exterior beam-column subassemblies which have non-seismic detailing based on the building code of Korea were constructed and tested with reversed cycling loading under the displacement control method. The special features of joint with non-seismic detailing is that there is no transverse reinforcement in the joint. In tests, cracks pattern, strength degradation, loss of stiffness, energy dissipation and the slippage of beam and column bars were investigated. Cracks did not occurred in the joint even seismic loading of 0.12g which is considered as peak ground acceleration in Korea was applied. And increasing seismic loading above 0.12g shear crack happened in the joint which have not transverse beam.

Seismic Performance-based Design using Computational Platform for Structural Design of Complex-shaped Tall Building (전산플랫폼을 이용한 비정형 초고층 건축물 성능기반 내진설계기술의 실무적용)

  • Lee, Dong-Hun;Cho, Chang-Hee;Youn, Wu-Seok;Kang, Dae-Eon;Kim, Taejin;Kim, Jong-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.1
    • /
    • pp.59-67
    • /
    • 2013
  • Complex-shaped tall building causes many structural challenges due to its structural characteristics regarding inclined members and complexed shape. This paper is aimed at development of design process using computational-platform which is effective design tool for responding frequent design changes, particularly as to overseas projects. StrAuto, a parametric structural modeling and optimizing system, provides the optimized alternatives according to design intent and realize a swift process converting a series of structural information necessary to nonlinear analytical models. The application of the process was to a 45-story hotel building in Ulanbator, Mongolia adopting shear wall and special moment frame with outrigger systems. To investigate the safety of lateral force resisting system against maximum considered earthquake(MCE), nonlinear response history analysis was conducted using StrAuto.

Cyclic Loading Test for Beam-to-Column Connections of Concrete Encased CFT Column (콘크리트피복충전 각형강관 기둥-보 접합부의 주기하중 실험)

  • Park, Hong Gun;Lee, Ho Jun;Park, Sung Soon;Kim, Sung Bae
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.1
    • /
    • pp.55-68
    • /
    • 2014
  • In this study, the beam-to column connections of concrete-encased-and-filled steel tube columns were tested under cyclic loading. Two specimens using steel beams and two specimens using precast concrete beams were tested. The dimension of the column cross section was $670mm{\pm}670mm$. The beam depths were 488mm and 588mm for the steel beams and 700mm for the precast concrete beams. The longitudinal bar ratios of the precast concrete beams were 1.1% and 1.5%. For the connections to the steel beams, continuity plates were used in the tube columns. For the connections to the PC beams, couplers were used for beam re-bar connections. The test results showed that except for a specimen, deformation capacities of the specimens were greater than 4% rotation angle, which is the requirement for the Special Moment Frame. Particularly, specimens using precast concrete beam showed excellent performances in the strength, deformation, and energy dissipation.