• Title/Summary/Keyword: speaker dependent

Search Result 139, Processing Time 0.025 seconds

A Study of Cepstrum Normalization Using World Model for Robust Speaker Verification (강인한 화자 확인 시스템을 위한 World 모델을 이용한 켑스트럼 정규화 연구)

  • Kim Yu-Jin;Chung Jae-Ho
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.55-58
    • /
    • 2000
  • 본 논문에서는 화자 확인 시스템의 등록과 확인 과정의 채널 환경 불일치로 성능이 저하되는 문제를 해결하기 위한 새로운 정규화 방법에 대해 설명한다. 제안된 방법은 첫째, 입력 음성으로부터 효과적으로 채널을 추정$\cdot$보상하고 둘째, 스코어 정규화 과정에서 사칭자 모델로서 사용되는 world모델과의 차이를 채널 추정 및 화자 모델 생성에 효과적으로 사용하는 것을 목표로 한다. 이를 위해 입력 음성의 켑스트럼과 HMM world 모델의 파라메터인 평균 켑스트럼과의 차이를 통해 음소열에 종속적인 채널 켑스트럼인 Phone-Dependent Difference Cepstrum을 추정한다. 한편 입력 음성의 음소열은 world모델의 스코어를 얻는 과정에서 함께 얻어질 수 있다. 채널 추정 실험 결과를 통해서 가장 일반적인 채널 정규화방법인 CMS에 의해 추정된 채널에 비해 실제 채널과 유사하며 화자 고유의 특성을 왜곡시키지 않는 채널 추정이 가능함을 확인할 수 있었다.

  • PDF

A Speaker Dependent Speech Recognition Method Using LSP Parameters for Small Training Data (적은 훈련 데이터를 이용한 LSP 파라메터 기반의 화자종속 음성인식에 관한 연구)

  • 곽수주
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.06e
    • /
    • pp.373-376
    • /
    • 1998
  • 통신 수단의 발달로 휴대단말기의 사용이 증가하고 있으며, 이와 함께 휴대단말기에서의 음성인식에 대한 수요도 증가하고 있다. 휴대단말기의 경우 저 전송율을 가지는 음성 부호화기를 사용하게 되며, 이러한 저전송율의 음성 부호화기에서의 음성인식을 수행할 경우 인식 성능이 저하되는 현상을 보이게 된다. 본 논문에서는 이러한 문제를 해결하기 위하여 LSP 파라메터 기반의 거리척도에 관하여 비교 검토하였으며, 적은 훈련 데이터에서 사용 가능한 화자 종속 음성인식 방법으로 Dynamic Time Warping(DTW)과 변형된 Hidden Markov Model(HMM)에 관하여 검토하였다. QCELP 음성 부호화기에서 인식 어휘 당 2번의 훈련 데이터만을 이용한 화자종속 인식방법을 사용한 결과 95% 이상의 인식 성능을 얻을 수 있었다.

  • PDF

Implementation of a Single-chip Speech Recognizer Using the TMS320C2000 DSPs (TMS320C2000계열 DSP를 이용한 단일칩 음성인식기 구현)

  • Chung, Ik-Joo
    • Speech Sciences
    • /
    • v.14 no.4
    • /
    • pp.157-167
    • /
    • 2007
  • In this paper, we implemented a single-chip speech recognizer using the TMS320C2000 DSPs. For this implementation, we had developed very small-sized speaker-dependent recognition engine based on dynamic time warping, which is especially suited for embedded systems where the system resources are severely limited. We carried out some optimizations including speed optimization by programming time-critical functions in assembly language, and code size optimization and effective memory allocation. For the TMS320F2801 DSP which has 12Kbyte SRAM and 32Kbyte flash ROM, the recognizer developed can recognize 10 commands. For the TMS320F2808 DSP which has 36Kbyte SRAM and 128Kbyte flash ROM, it has additional capability of outputting the speech sound corresponding to the recognition result. The speech sounds for response, which are captured when the user trains commands, are encoded using ADPCM and saved on flash ROM. The single-chip recognizer needs few parts except for a DSP itself and an OP amp for amplifying microphone output and anti-aliasing. Therefore, this recognizer may play a similar role to dedicated speech recognition chips.

  • PDF

A Study on Design and Implementation of Embedded System for speech Recognition Process

  • Kim, Jung-Hoon;Kang, Sung-In;Ryu, Hong-Suk;Lee, Sang-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.2
    • /
    • pp.201-206
    • /
    • 2004
  • This study attempted to develop a speech recognition module applied to a wheelchair for the physically handicapped. In the proposed speech recognition module, TMS320C32 was used as a main processor and Mel-Cepstrum 12 Order was applied to the pro-processor step to increase the recognition rate in a noisy environment. DTW (Dynamic Time Warping) was used and proven to be excellent output for the speaker-dependent recognition part. In order to utilize this algorithm more effectively, the reference data was compressed to 1/12 using vector quantization so as to decrease memory. In this paper, the necessary diverse technology (End-point detection, DMA processing, etc.) was managed so as to utilize the speech recognition system in real time

Sensibility Classification Algorithm of EEGs using Multi-template Method (다중 템플릿 방법을 이용한 뇌파의 감성 분류 알고리즘)

  • Kim Dong-Jun
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.12
    • /
    • pp.834-838
    • /
    • 2004
  • This paper proposes an algorithm for EEG pattern classification using the Multi-template method, which is a kind of speaker adaptation method for speech signal processing. 10-channel EEG signals are collected in various environments. The linear prediction coefficients of the EEGs are extracted as the feature parameter of human sensibility. The human sensibility classification algorithm is developed using neural networks. Using EEGs of comfortable or uncomfortable seats, the proposed algorithm showed about 75% of classification performance in subject-independent test. In the tests using EEG signals according to room temperature and humidity variations, the proposed algorithm showed good performance in tracking of pleasantness changes and the subject-independent tests produced similar performances with subject-dependent ones.

Speech Recognition in the Car Noise Environment (자동차 소음 환경에서 음성 인식)

  • 김완구;차일환;윤대희
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.2
    • /
    • pp.51-58
    • /
    • 1993
  • This paper describes the development of a speaker-dependent isolated word recognizer as applied to voice dialing in a car noise environment. for this purpose, several methods to improve performance under such condition are evaluated using database collected in a small car moving at 100km/h The main features of the recognizer are as follow: The endpoint detection error can be reduced by using the magnitude of the signal which is inverse filtered by the AR model of the background noise, and it can be compensated by using variants of the DTW algorithm. To remove the noise, an autocorrelation subtraction method is used with the constraint that residual energy obtainable by linear predictive analysis should be positive. By using the noise rubust distance measure, distortion of the feature vector is minimized. The speech recognizer is implemented using the Motorola DSP56001(24-bit general purpose digital signal processor). The recognition database is composed of 50 Korean names spoken by 3 male speakers. The recognition error rate of the system is reduced to 4.3% using a single reference pattern for each word and 1.5% using 2 reference patterns for each word.

  • PDF

Observation Probability Weighting Method for Text-Dependent Speaker Verification (문장종속형 화자확인에서의 관측확률 가중기법)

  • Kim Se-Hyun;Jang Gil-Jin;Oh Yung-Hwan
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.28-31
    • /
    • 1999
  • 기존의 문장종속형 화자인식 방법들은 대부분 음성인식에서 사용되는 방법을 그대로 적용하기 때문에, 화자의 개인성 정보보다 음운정보에 더 민감한 단점이 있다. 화자인식 시스템의 성능향상을 위해서는 음운정보보다는 화자의 개인성 정보가 잘 반영되도록 하는 것이 중요하다. 본 논문에서는 HMM(hidden Maxkov model)을 기반으로 한 문장종속형 화자확인 시스템의 성능향상을 위한 관측확률 가중 반법을 제안한다. 먼저 주어진 학습자료에서 화자의 개인성이 잘 반영된 프레임들을 예측한다. 임의의 입력음성에 대한 인식점수는 화자의 특징이 잘 반영된 프레임의 관측확률에 가중치를 주어 구한다. 제안한 방법을 적용한 결과 기존의 우도비(likelihood ratio) 정규화 점수를 사용하는 방법에 비해 동일오류율(EER, equal error rate)을 $2\~3\%$정도 줄여 인식율 향상을 얻을 수 있었다.

  • PDF

Real-time implementation of speaker dependent speech recognition hardware module using the TMS320C32 DSP (TMS320C32 DSP를 이용한 실시간 화자종속 음성인식 하드뒈어 모듈 구현)

  • Chung, Hoon;Chung, Ik-joo
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.08a
    • /
    • pp.14-22
    • /
    • 1998
  • 본 연구에서는 Texas instruments 사의 저가형 부동소수점 디지털 신호 처리기인 TMS320C32를 이용하여 실시간 화자종속 음성인식 하드웨어 모듈을 개발하였다. 하드웨어 모듈의구성은 40MHz 의 TMS320C32, 14bit 코덱인 TLC32044, EPROM 과 SRAM 등의 메모리와 호스트 인터페이스를 위한 로직회로로 이루어져 있다. 뿐만 아니라 이 하드웨어 모듈을 PC 상에서 평가해보기 위한 PC 인터페이스용 보드 및 소프트웨어도 개발하였다. 음성인식 알고리즘은 C 및 어셈블리를 이용한 최적화를 통하여 계산속도를 대폭 개선하였다. 현재 인식률은 일반 사무실 환경에서 30단어에 대하여 95% 이상으로 매우 높은 편이며, 특히 배경음악이나 자동차 소음과 같은 잡음환경에서도 잘 동작한다.

  • PDF

Text-dependent Speaker Verification System in SVAPI 1.0 Environment (SVAPI 1.0 환경에서의 어구 종속 화자 확인 시스템)

  • 김유진
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.08a
    • /
    • pp.401-405
    • /
    • 1998
  • SVAPI 1.0 환경에서의 어구 종속 화자 확인 시스템에 대해 기술한다. 구현된 시스템은 궁극적으로 공중 전화망 응용이 가능한 실용 시스템을 목표로 개발되었으며 이를 위해 SVAPI 위원회에 의해 제안된 SVAPI 1.0을 개발 환경으로 사용하였다. SVAPI는 객체 지향 구조, 클라이언트-서버 및 telephony 환경의 지원등이 특징이며 어플리케이션과 엔진을 독립적으로 개발할 수 있는 이점을 제공한다. 구현된 데모 시스템은 펜티엄 프로세서와 Windows95/NT 4.0 운영체제 그리고 Win16/Win32 API를 통해 제어 가능하며 음성 입력이 가능한 디바이스를 장착한 IBM 호환 PC이다. 화자의 성문 등록은 화자가 동일한 어구를 3회 발성하여 이뤄지며 등록과 확인의 응답속도는 모두 1초 이내이다. 소프트웨어의 구성은 크게 어플리케이션과 어구 종속 화자 확인 엔진으로 구분할 수 있으며 엔진은 끝점 검출 알고리즘, 음성 특징 추출 알고리즘 그리고 연속 HMM 기반의 화자 성문 모델 등록 및 유사도 계산 등을 포함한 확인 알고리즘으로 구성되어 있다. 화자의 성문은이름과 같은 약 3음절 이상의 단어로 등록되고 테스트되었다. 엔진의 객관적인 평가를 위해 전화선을 통해 남자 6명, 여자 3명의 화자로부터 자신의 이름을 각각 40회 발성하여 구축된 음성 데이터 베이스를 사용하였으며 실험 결과 남자는 2.85%, 여자는 2.44%의 EER을 각각 얻었다.

  • PDF

Voice Recognition Module for Multi-functional Electric Wheelchair (다기능 전동휠체어의 음성인식 모듈에 관한 연구)

  • 류홍석;김정훈;강성인;강재명;이상배
    • Proceedings of the IEEK Conference
    • /
    • 2002.06c
    • /
    • pp.83-86
    • /
    • 2002
  • This paper intends to provide convenience to the disabled, losing the use of their limbs, through voice recognition technology. The voice recognition part of this system recognizes voice by DTW (Dynamic Time Warping) Which is most Widely used in Speaker dependent system. Specially, S/N rate was improved through Wiener filter in the pre-treatment phase while considering real environmental conditions; the result values of 12th order feature pattern per frame are extracted by DTW algorithm using LPC and Cepsturm in feature extraction process. Furthermore, miniaturization is pursued using TMS320C32, 71's the floating-point DSP, for the hardware part. Currently, 90% of hardware porting has been completed, but we can confirm that the recognition rate was 96% as a result of performing the DTW algorithm in PC.

  • PDF