• Title/Summary/Keyword: spatiotemporal data mining

Search Result 14, Processing Time 0.016 seconds

The Distributed Management System of Moving Objects for LBS

  • Jang, In-Sung;Cho, Dae-Soo;Park, Jong-Hyun
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.163-167
    • /
    • 2002
  • Recently, owing to performance elevation of telecommunication technology, increase of wireless internet's subscriber and diffusion of wireless device, Interest about LBS (Location Based Service) which take advantage of user's location information and can receive information in concerning with user's location is increasing rapidly. So, MOMS (Moving Object Management System) that manage user's location information is required compulsorily to provide location base service. LBS of childhood such as service to find a friend need only current location, but to provide high-quality service in connection with Data Mining, CRM, We must be able to manage location information of past. In this paper, we design distributed manage system to insert and search Moving Object in a large amount. It has been consisted of CLIM (Current Location Information Manager), PLIM (Past-Location Information Manager) and BLIM (Distributed Location Information Manager). CLIM and PLIM prove performance of searching data by using spatiotemporal-index. DLIM distribute an enormous amount of location data to various database. Thus it keeps load-balance, regulates overload and manage a huge number of location information efficiently.

  • PDF

Development and Analysis of the Interchange Centrality Evaluation Index Using Network Analysis (네트워크 분석을 이용한 거점평가지표 개발 및 특성분석)

  • KIM, Suhyun;PARK, Seungtae;WOO, Sunhee;LEE, Seungchul
    • Journal of Korean Society of Transportation
    • /
    • v.35 no.6
    • /
    • pp.525-544
    • /
    • 2017
  • With the advent of the big data era, the interest in the development of land using traffic data has increased significantly. However, the current research on traffic big data lingers around organizing or calibrating the data only. In this research, a novel method for discovering the hidden values within the traffic data through data mining is proposed. Considering the fact that traffic data and network structures have similarities, network analysis algorithms are used to find valuable information in the actual traffic volume data. The PageRank and HITS algorithms are then employed to find the centralities. While conventional methods present centralities based on uncomplicated traffic volume data, the proposed method provides more reasonable centrality locations through network analysis. Since the centrality locations that we have found carry detailed spatiotemporal characteristics, such information can be used as an objective basis for making policy decisions.

A Suggestion for Spatiotemporal Analysis Model of Complaints on Officially Assessed Land Price by Big Data Mining (빅데이터 마이닝에 의한 공시지가 민원의 시공간적 분석모델 제시)

  • Cho, Tae In;Choi, Byoung Gil;Na, Young Woo;Moon, Young Seob;Kim, Se Hun
    • Journal of Cadastre & Land InformatiX
    • /
    • v.48 no.2
    • /
    • pp.79-98
    • /
    • 2018
  • The purpose of this study is to suggest a model analysing spatio-temporal characteristics of the civil complaints for the officially assessed land price based on big data mining. Specifically, in this study, the underlying reasons for the civil complaints were found from the spatio-temporal perspectives, rather than the institutional factors, and a model was suggested monitoring a trend of the occurrence of such complaints. The official documents of 6,481 civil complaints for the officially assessed land price in the district of Jung-gu of Incheon Metropolitan City over the period from 2006 to 2015 along with their temporal and spatial poperties were collected and used for the analysis. Frequencies of major key words were examined by using a text mining method. Correlations among mafor key words were studied through the social network analysis. By calculating term frequency(TF) and term frequency-inverse document frequency(TF-IDF), which correspond to the weighted value of key words, I identified the major key words for the occurrence of the civil complaint for the officially assessed land price. Then the spatio-temporal characteristics of the civil complaints were examined by analysing hot spot based on the statistics of Getis-Ord $Gi^*$. It was found that the characteristic of civil complaints for the officially assessed land price were changing, forming a cluster that is linked spatio-temporally. Using text mining and social network analysis method, we could find out that the occurrence reason of civil complaints for the officially assessed land price could be identified quantitatively based on natural language. TF and TF-IDF, the weighted averages of key words, can be used as main explanatory variables to analyze spatio-temporal characteristics of civil complaints for the officially assessed land price since these statistics are different over time across different regions.

Analysis of Traffic Accidents Injury Severity in Seoul using Decision Trees and Spatiotemporal Data Visualization (의사결정나무와 시공간 시각화를 통한 서울시 교통사고 심각도 요인 분석)

  • Kang, Youngok;Son, Serin;Cho, Nahye
    • Journal of Cadastre & Land InformatiX
    • /
    • v.47 no.2
    • /
    • pp.233-254
    • /
    • 2017
  • The purpose of this study is to analyze the main factors influencing the severity of traffic accidents and to visualize spatiotemporal characteristics of traffic accidents in Seoul. To do this, we collected the traffic accident data that occurred in Seoul for four years from 2012 to 2015, and classified as slight, serious, and death traffic accidents according to the severity of traffic accidents. The analysis of spatiotemporal characteristics of traffic accidents was performed by kernel density analysis, hotspot analysis, space time cube analysis, and Emerging HotSpot Analysis. The factors affecting the severity of traffic accidents were analyzed using decision tree model. The results show that traffic accidents in Seoul are more frequent in suburbs than in central areas. Especially, traffic accidents concentrated in some commercial and entertainment areas in Seocho and Gangnam, and the traffic accidents were more and more intense over time. In the case of death traffic accidents, there were statistically significant hotspot areas in Yeongdeungpo-gu, Guro-gu, Jongno-gu, Jung-gu and Seongbuk. However, hotspots of death traffic accidents by time zone resulted in different patterns. In terms of traffic accident severity, the type of accident is the most important factor. The type of the road, the type of the vehicle, the time of the traffic accident, and the type of the violation of the regulations were ranked in order of importance. Regarding decision rules that cause serious traffic accidents, in case of van or truck, there is a high probability that a serious traffic accident will occur at a place where the width of the road is wide and the vehicle speed is high. In case of bicycle, car, motorcycle or the others there is a high probability that a serious traffic accident will occur under the same circumstances in the dawn time.