• Title/Summary/Keyword: spatio-temporal models

Search Result 92, Processing Time 0.029 seconds

Discussion on Spatio-temporal Modeling

  • Tingting, Mao;Yu, Liu;Baojia, Lin;Lun, Wu
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.178-181
    • /
    • 2003
  • The temporal GIS data modeling methods are discussed in this paper. At first, two conceptual models of spatio-temporal data are introduced, and then some typical STDMs based on these two models are summed up and compared. After that, the spatio-temporal changes are analyzed thoroughly, and then how to model spatio -temporal data from different aspects is discussed. At last, several issues that need further research are pointed out.

  • PDF

A Study on Temporal Map for Spatio-temporal Analysis (시.공간분석을 위한 GIS기법의 시간 지도 구현에 관한 연구 - 안양시틀 사례로 -)

  • 오충원
    • Journal of the Korean Geographical Society
    • /
    • v.37 no.2
    • /
    • pp.191-202
    • /
    • 2002
  • Characteristics and patterns of geographic features and human activities can be interpreted in terms of spatiality and temporality. The necessity to record the historical changes and the ability to reason in the real world has lead to a new field of research so called Integrated Spatio-Temporal analysis. The objective of this study is to investigate temporal maps for Spatio-temporal analysis, which have the integration functionality for visualizing spatiality and temporality of the geographic appearances and human activities. Land information is composed of spatial, attribute and temporal data and requires spatio-temporal representations. It is possible to visualize spatio-temporal variations with spatio-temporal databases and temporal map produced by integrated data models. This study constructs spatio-temporal model for temporal maps of land price variation analysis. Taking advantage of the spatio-temporal model proposed here, it is possible to visualize spatio-temporal variations with spatio-temporal database and temporal map. On a practical level, this study would be extended and utilized to various geographic features.

Evaluation of Spatio-temporal Fusion Models of Multi-sensor High-resolution Satellite Images for Crop Monitoring: An Experiment on the Fusion of Sentinel-2 and RapidEye Images (작물 모니터링을 위한 다중 센서 고해상도 위성영상의 시공간 융합 모델의 평가: Sentinel-2 및 RapidEye 영상 융합 실험)

  • Park, Soyeon;Kim, Yeseul;Na, Sang-Il;Park, No-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_1
    • /
    • pp.807-821
    • /
    • 2020
  • The objective of this study is to evaluate the applicability of representative spatio-temporal fusion models developed for the fusion of mid- and low-resolution satellite images in order to construct a set of time-series high-resolution images for crop monitoring. Particularly, the effects of the characteristics of input image pairs on the prediction performance are investigated by considering the principle of spatio-temporal fusion. An experiment on the fusion of multi-temporal Sentinel-2 and RapidEye images in agricultural fields was conducted to evaluate the prediction performance. Three representative fusion models, including Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM), SParse-representation-based SpatioTemporal reflectance Fusion Model (SPSTFM), and Flexible Spatiotemporal DAta Fusion (FSDAF), were applied to this comparative experiment. The three spatio-temporal fusion models exhibited different prediction performance in terms of prediction errors and spatial similarity. However, regardless of the model types, the correlation between coarse resolution images acquired on the pair dates and the prediction date was more significant than the difference between the pair dates and the prediction date to improve the prediction performance. In addition, using vegetation index as input for spatio-temporal fusion showed better prediction performance by alleviating error propagation problems, compared with using fused reflectance values in the calculation of vegetation index. These experimental results can be used as basic information for both the selection of optimal image pairs and input types, and the development of an advanced model in spatio-temporal fusion for crop monitoring.

Comparison of Spatio-temporal Fusion Models of Multiple Satellite Images for Vegetation Monitoring (식생 모니터링을 위한 다중 위성영상의 시공간 융합 모델 비교)

  • Kim, Yeseul;Park, No-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_3
    • /
    • pp.1209-1219
    • /
    • 2019
  • For consistent vegetation monitoring, it is necessary to generate time-series vegetation index datasets at fine temporal and spatial scales by fusing the complementary characteristics between temporal and spatial scales of multiple satellite data. In this study, we quantitatively and qualitatively analyzed the prediction accuracy of time-series change information extracted from spatio-temporal fusion models of multiple satellite data for vegetation monitoring. As for the spatio-temporal fusion models, we applied two models that have been widely employed to vegetation monitoring, including a Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) and an Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM). To quantitatively evaluate the prediction accuracy, we first generated simulated data sets from MODIS data with fine temporal scales and then used them as inputs for the spatio-temporal fusion models. We observed from the comparative experiment that ESTARFM showed better prediction performance than STARFM, but the prediction performance for the two models became degraded as the difference between the prediction date and the simultaneous acquisition date of the input data increased. This result indicates that multiple data acquired close to the prediction date should be used to improve the prediction accuracy. When considering the limited availability of optical images, it is necessary to develop an advanced spatio-temporal model that can reflect the suggestions of this study for vegetation monitoring.

Forecasting COVID-19 confirmed cases in South Korea using Spatio-Temporal Graph Neural Networks

  • Ngoc, Kien Mai;Lee, Minho
    • International Journal of Contents
    • /
    • v.17 no.3
    • /
    • pp.1-14
    • /
    • 2021
  • Since the outbreak of the coronavirus disease 2019 (COVID-19) pandemic, a lot of efforts have been made in the field of data science to help combat against this disease. Among them, forecasting the number of cases of infection is a crucial problem to predict the development of the pandemic. Many deep learning-based models can be applied to solve this type of time series problem. In this research, we would like to take a step forward to incorporate spatial data (geography) with time series data to forecast the cases of region-level infection simultaneously. Specifically, we model a single spatio-temporal graph, in which nodes represent the geographic regions, spatial edges represent the distance between each pair of regions, and temporal edges indicate the node features through time. We evaluate this approach in COVID-19 in a Korean dataset, and we show a decrease of approximately 10% in both RMSE and MAE, and a significant boost to the training speed compared to the baseline models. Moreover, the training efficiency allows this approach to be extended for a large-scale spatio-temporal dataset.

A Cost Model for the Performance Prediction of the TPR-tree (TPR-tree의 성능 예측을 위한 비용 모델)

  • 최용진;정진완
    • Journal of KIISE:Databases
    • /
    • v.31 no.3
    • /
    • pp.252-260
    • /
    • 2004
  • Recently, the TPR-tree has been proposed to support spatio-temporal queries for moving objects. Subsequently, various methods using the TPR-tree have been intensively studied. However, although the TPR-tree is one of the most popular access methods in spatio-temporal databases, any cost model for the TPR-tree has not yet been proposed. Existing cost models for the spatial index such as the R-tree do not accurately ostinato the number of disk accesses for spatio-temporal queries using the TPR-tree, because they do not consider the future locations of moving objects. In this paper, we propose a cost model of the TPR-tree for moving objects for the first time. Extensive experimental results show that our proposed method accurately estimates the number of disk accesses over various spatio-temporal queries.

A Design of Spatio-Temporal Data Model for Simple Fuzzy Regions

  • Vu Thi Hong Nhan;Chi, Jeong-Hee;Nam, Kwang-Woo;Ryu, Keun-Ho
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.384-387
    • /
    • 2003
  • Most of the real world phenomena change over time. The ability to represent and to reason geographic data becomes crucial. A large amount of non-standard applications are dealing with data characterized by spatial, temporal and/or uncertainty features. Non-standard data like spatial and temporal data have an inner complex structure requiring sophisticated data representation, and their operations necessitate sophisticated and efficient algorithms. Current GIS technology is inefficient to model and to handle complex geographic phenomena, which involve space, time and uncertainty dimensions. This paper concentrates on developing a fuzzy spatio-temporal data model based on fuzzy set theory and relational data models. Fuzzy spatio-temporal operators are also provided to support dynamic query.

  • PDF

Modeling pediatric tumor risks in Florida with conditional autoregressive structures and identifying hot-spots

  • Kim, Bit;Lim, Chae Young
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.5
    • /
    • pp.1225-1239
    • /
    • 2016
  • We investigate pediatric tumor incidence data collected by the Florida Association for Pediatric Tumor program using various models commonly used in disease mapping analysis. Particularly, we consider Poisson normal models with various conditional autoregressive structure for spatial dependence, a zero-in ated component to capture excess zero counts and a spatio-temporal model to capture spatial and temporal dependence, together. We found that intrinsic conditional autoregressive model provides the smallest Deviance Information Criterion (DIC) among the models when only spatial dependence is considered. On the other hand, adding an autoregressive structure over time decreases DIC over the model without time dependence component. We adopt weighted ranks squared error loss to identify high risk regions which provides similar results with other researchers who have worked on the same data set (e.g. Zhang et al., 2014; Wang and Rodriguez, 2014). Our results, thus, provide additional statistical support on those identied high risk regions discovered by the other researchers.

Methodology of Spatio-temporal Matching for Constructing an Analysis Database Based on Different Types of Public Data

  • Jung, In taek;Chong, Kyu soo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.2
    • /
    • pp.81-90
    • /
    • 2017
  • This study aimed to construct an integrated database using the same spatio-temporal unit by employing various public-data types with different real-time information provision cycles and spatial units. Towards this end, three temporal interpolation methods (piecewise constant interpolation, linear interpolation, nonlinear interpolation) and a spatial matching method by district boundaries was proposed. The case study revealed that the linear interpolation is an excellent method, and the spatial matching method also showed good results. It is hoped that various prediction models and data analysis methods will be developed in the future using different types of data in the analysis database.

Traffic Flow Prediction with Spatio-Temporal Information Fusion using Graph Neural Networks

  • Huijuan Ding;Giseop Noh
    • International journal of advanced smart convergence
    • /
    • v.12 no.4
    • /
    • pp.88-97
    • /
    • 2023
  • Traffic flow prediction is of great significance in urban planning and traffic management. As the complexity of urban traffic increases, existing prediction methods still face challenges, especially for the fusion of spatiotemporal information and the capture of long-term dependencies. This study aims to use the fusion model of graph neural network to solve the spatio-temporal information fusion problem in traffic flow prediction. We propose a new deep learning model Spatio-Temporal Information Fusion using Graph Neural Networks (STFGNN). We use GCN module, TCN module and LSTM module alternately to carry out spatiotemporal information fusion. GCN and multi-core TCN capture the temporal and spatial dependencies of traffic flow respectively, and LSTM connects multiple fusion modules to carry out spatiotemporal information fusion. In the experimental evaluation of real traffic flow data, STFGNN showed better performance than other models.