• Title/Summary/Keyword: spatio- temporal clustering

Search Result 38, Processing Time 0.025 seconds

Performance Comparison of Clustering Techniques for Spatio-Temporal Data (시공간 데이터를 위한 클러스터링 기법 성능 비교)

  • Kang Nayoung;Kang Juyoung;Yong Hwan-Seung
    • Journal of Intelligence and Information Systems
    • /
    • v.10 no.2
    • /
    • pp.15-37
    • /
    • 2004
  • With the growth in the size of datasets, data mining has recently become an important research topic. Especially, interests about spatio-temporal data mining has been increased which is a method for analyzing massive spatio-temporal data collected from a wide variety of applications like GPS data, trajectory data of surveillance system and earth geographic data. In the former approaches, conventional clustering algorithms are applied as spatio-temporal data mining techniques without any modification. In this paper, we focused to SOM that is the most common clustering algorithm applied to clustering analysis in data mining wet and develop the spatio-temporal data mining module based on it. In addition, we analyzed the clustering results of developed SOM module and compare them with those of K-means and Agglomerative Hierarchical algorithm in the aspects of homogeneity, separation, separation, silhouette width and accuracy. We also developed specialized visualization module fur more accurate interpretation of mining result.

  • PDF

Spatio-temporal Load Forecasting Considering Aggregation Features of Electricity Cells and Uncertainties in Input Variables

  • Zhao, Teng;Zhang, Yan;Chen, Haibo
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.38-50
    • /
    • 2018
  • Spatio-temporal load forecasting (STLF) is a foundation for building the prediction-based power map, which could be a useful tool for the visualization and tendency assessment of urban energy application. Constructing one point-forecasting model for each electricity cell in the geographic space is possible; however, it is unadvisable and insufficient, considering the aggregation features of electricity cells and uncertainties in input variables. This paper presents a new STLF method, with a data-driven framework consisting of 3 subroutines: multi-level clustering of cells considering their aggregation features, load regression for each category of cells based on SLS-SVRNs (sparse least squares support vector regression networks), and interval forecasting of spatio-temporal load with sampled blind number. Take some area in Pudong, Shanghai as the region of study. Results of multi-level clustering show that electricity cells in the same category are clustered in geographic space to some extent, which reveals the spatial aggregation feature of cells. For cellular load regression, a comparison has been made with 3 other forecasting methods, indicating the higher accuracy of the proposed method in point-forecasting of spatio-temporal load. Furthermore, results of interval load forecasting demonstrate that the proposed prediction-interval construction method can effectively convey the uncertainties in input variables.

Collective Prediction exploiting Spatio Temporal correlation (CoPeST) for energy efficient wireless sensor networks

  • ARUNRAJA, Muruganantham;MALATHI, Veluchamy
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.7
    • /
    • pp.2488-2511
    • /
    • 2015
  • Data redundancy has high impact on Wireless Sensor Network's (WSN) performance and reliability. Spatial and temporal similarity is an inherent property of sensory data. By reducing this spatio-temporal data redundancy, substantial amount of nodal energy and bandwidth can be conserved. Most of the data gathering approaches use either temporal correlation or spatial correlation to minimize data redundancy. In Collective Prediction exploiting Spatio Temporal correlation (CoPeST), we exploit both the spatial and temporal correlation between sensory data. In the proposed work, the spatial redundancy of sensor data is reduced by similarity based sub clustering, where closely correlated sensor nodes are represented by a single representative node. The temporal redundancy is reduced by model based prediction approach, where only a subset of sensor data is transmitted and the rest is predicted. The proposed work reduces substantial amount of energy expensive communication, while maintaining the data within user define error threshold. Being a distributed approach, the proposed work is highly scalable. The work achieves up to 65% data reduction in a periodical data gathering system with an error tolerance of 0.6℃ on collected data.

Spatio-temporal Query Clustering: A Data Cubing Approach (시공간 질의 클러스터링: 데이터 큐빙 기법)

  • Chen, Xiangrui;Baek, Sung-Ha;Bae, Hae-Young
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.11a
    • /
    • pp.287-288
    • /
    • 2009
  • Multi-query optimization (MQO) is a critical research issue in the real-time data stream management system (DSMS). We propose to address this problem in the ubiquitous GIS (u-GIS) environment, focusing on grouping 'similar' spatio-temporal queries incrementally into N clusters so that they can be processed virtually as N queries. By minimizing N, the overlaps in the data requirements of the raw queries can be avoided, which implies the reducing of the total disk I/O cost. In this paper, we define the spatio-temporal query clustering problem and give a data cubing approach (Q-cube), which is expected to be implemented in the cloud computing paradigm.

Multiple Person Tracking based on Spatial-temporal Information by Global Graph Clustering

  • Su, Yu-ting;Zhu, Xiao-rong;Nie, Wei-Zhi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.6
    • /
    • pp.2217-2229
    • /
    • 2015
  • Since the variations of illumination, the irregular changes of human shapes, and the partial occlusions, multiple person tracking is a challenging work in computer vision. In this paper, we propose a graph clustering method based on spatio-temporal information of moving objects for multiple person tracking. First, the part-based model is utilized to localize individual foreground regions in each frame. Then, we heuristically leverage the spatio-temporal constraints to generate a set of reliable tracklets. Finally, the graph shift method is applied to handle tracklet association problem and consequently generate the completed trajectory for individual object. The extensive comparison experiments demonstrate the superiority of the proposed method.

Abnormal Behavior Recognition Based on Spatio-temporal Context

  • Yang, Yuanfeng;Li, Lin;Liu, Zhaobin;Liu, Gang
    • Journal of Information Processing Systems
    • /
    • v.16 no.3
    • /
    • pp.612-628
    • /
    • 2020
  • This paper presents a new approach for detecting abnormal behaviors in complex surveillance scenes where anomalies are subtle and difficult to distinguish due to the intricate correlations among multiple objects' behaviors. Specifically, a cascaded probabilistic topic model was put forward for learning the spatial context of local behavior and the temporal context of global behavior in two different stages. In the first stage of topic modeling, unlike the existing approaches using either optical flows or complete trajectories, spatio-temporal correlations between the trajectory fragments in video clips were modeled by the latent Dirichlet allocation (LDA) topic model based on Markov random fields to obtain the spatial context of local behavior in each video clip. The local behavior topic categories were then obtained by exploiting the spectral clustering algorithm. Based on the construction of a dictionary through the process of local behavior topic clustering, the second phase of the LDA topic model learns the correlations of global behaviors and temporal context. In particular, an abnormal behavior recognition method was developed based on the learned spatio-temporal context of behaviors. The specific identification method adopts a top-down strategy and consists of two stages: anomaly recognition of video clip and anomalous behavior recognition within each video clip. Evaluation was performed using the validity of spatio-temporal context learning for local behavior topics and abnormal behavior recognition. Furthermore, the performance of the proposed approach in abnormal behavior recognition improved effectively and significantly in complex surveillance scenes.

Discretizing Spatio-Temporal Data using Data Reduction and Clustering (데이타 축소와 군집화를 사용하는 시공간 데이타의 이산화 기법)

  • Kang, Ju-Young;Yong, Hwan-Seung
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.1
    • /
    • pp.57-61
    • /
    • 2009
  • To increase the efficiency of mining process and derive accurate spatio-temporal patterns, continuous values of attributes should be discretized prior to mining process. In this paper, we propose a discretization method which improves the mining efficiency by reducing the data size without losing the correlations in the data. The proposed method first s original trajectories into approximations using line simplification and then groups them into similar clusters. Our experiments show that the proposed approach improves the mining efficiency as well as extracts more intuitive patterns compared to existing discretization methods.

Data Correlation-Based Clustering Algorithm in Wireless Sensor Networks

  • Yeo, Myung-Ho;Seo, Dong-Min;Yoo, Jae-Soo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.3 no.3
    • /
    • pp.331-343
    • /
    • 2009
  • Many types of sensor data exhibit strong correlation in both space and time. Both temporal and spatial suppressions provide opportunities for reducing the energy cost of sensor data collection. Unfortunately, existing clustering algorithms are difficult to utilize the spatial or temporal opportunities, because they just organize clusters based on the distribution of sensor nodes or the network topology but not on the correlation of sensor data. In this paper, we propose a novel clustering algorithm based on the correlation of sensor data. We modify the advertisement sub-phase and TDMA schedule scheme to organize clusters by adjacent sensor nodes which have similar readings. Also, we propose a spatio-temporal suppression scheme for our clustering algorithm. In order to show the superiority of our clustering algorithm, we compare it with the existing suppression algorithms in terms of the lifetime of the sensor network and the size of data which have been collected in the base station. As a result, our experimental results show that the size of data is reduced and the whole network lifetime is prolonged.

A Spatio-Temporal Clustering Technique for the Moving Object Path Search (이동 객체 경로 탐색을 위한 시공간 클러스터링 기법)

  • Lee, Ki-Young;Kang, Hong-Koo;Yun, Jae-Kwan;Han, Ki-Joon
    • Journal of Korea Spatial Information System Society
    • /
    • v.7 no.3 s.15
    • /
    • pp.67-81
    • /
    • 2005
  • Recently, the interest and research on the development of new application services such as the Location Based Service and Telemetics providing the emergency service, neighbor information search, and route search according to the development of the Geographic Information System have been increasing. User's search in the spatio-temporal database which is used in the field of Location Based Service or Telemetics usually fixes the current time on the time axis and queries the spatial and aspatial attributes. Thus, if the range of query on the time axis is extensive, it is difficult to efficiently deal with the search operation. For solving this problem, the snapshot, a method to summarize the location data of moving objects, was introduced. However, if the range to store data is wide, more space for storing data is required. And, the snapshot is created even for unnecessary space that is not frequently used for search. Thus, non storage space and memory are generally used in the snapshot method. Therefore, in this paper, we suggests the Hash-based Spatio-Temporal Clustering Algorithm(H-STCA) that extends the two-dimensional spatial hash algorithm used for the spatial clustering in the past to the three-dimensional spatial hash algorithm for overcoming the disadvantages of the snapshot method. And, this paper also suggests the knowledge extraction algorithm to extract the knowledge for the path search of moving objects from the past location data based on the suggested H-STCA algorithm. Moreover, as the results of the performance evaluation, the snapshot clustering method using H-STCA, in the search time, storage structure construction time, optimal path search time, related to the huge amount of moving object data demonstrated the higher performance than the spatio-temporal index methods and the original snapshot method. Especially, for the snapshot clustering method using H-STCA, the more the number of moving objects was increased, the more the performance was improved, as compared to the existing spatio-temporal index methods and the original snapshot method.

  • PDF