• 제목/요약/키워드: spatially -variable

검색결과 82건 처리시간 0.027초

영상 복원을 위한 MRF 기반 적응적 노이즈 탐지 알고리즘 (MRF-based Adaptive Noise Detection Algorithm for Image Restoration)

  • 응웬 뚜안 안;홍민철
    • 한국멀티미디어학회논문지
    • /
    • 제16권12호
    • /
    • pp.1368-1375
    • /
    • 2013
  • 본 논문에서는 공간 적응적인 노이즈 검출 및 제거 방식에 대해 제안한다. 관측 영상 및 첨가 노이즈가 가우시안 분포 특성을 갖고 있다는 가정 하에 국부 통계 특성을 이용하여 노이즈 매개 변수들을 예측하며, 예측된 매개변수들은 1차 마르코프 랜덤 장과 연동하여 노이즈 검출 과정의 제약 조건을 설정하기 위해 사용된다. 더불어, 노이즈 검출 과정에서 설정된 제약 조건에 따라 제안된 가변 크기의 적응 저주파 통과 필터를 사용하여 적응적으로 복원 영상의 완화 정도를 제어하였다. 실험 결과를 통해 제안 방식의 효율성을 입증할 수 있었다.

흡기조건의 변화에 따른 공기조화용 회전재생기에 관한 실험적 연구 (An Experimental Study on the Rotary Regenerator for Air Conditioning according to Variable Inlet Conditions)

  • 이태우;조진호;서정일
    • 대한기계학회논문집
    • /
    • 제14권2호
    • /
    • pp.422-429
    • /
    • 1990
  • The experimental study investigates two aspects of counterflow sensible heat regenerator operation. First, it examines the regenerator performance in periodic steady state operation with spatially nonuniform inlet temperature in one of the fluid stream. Second, the study examines the transient response of a regenerator to a step change in the inlet temperature of one of the fluid streams. The effect of transient inlet temperatures is analyzed in terms of the response of the outlet fluid temperatures to a step change in temperature of one of the inlet fluid streams. The effect of temperature nonuniformities is analyzed in terms of the change of temperature nonuniformities is analyzed in terms of the change in steady state effectiveness due to a circumferential temperature distribution in one of the inlet fluid streams. an experimental analysis has been conducted using a counterflow, parallel passage, and rotary regenerator made from polyethylene film. Efficiencies follow similar trends with increasing matrix to fluid capacity rate ratio for the balanced and symmetric regenerator with nonuniform inlet temperature.

Theoretical formulation of double scalar damage variables

  • Xue, Xinhua;Zhang, Wohua
    • Computers and Concrete
    • /
    • 제19권5호
    • /
    • pp.501-507
    • /
    • 2017
  • The predictive utility of a damage model depends heavily on its particular choice of a damage variable, which serves as a macroscopic approximation in describing the underlying micromechanical processes of microdefects. In the case of spatially perfectly randomly distributed microcracks or microvoids in all directions, isotropic damage model is an appropriate choice, and scalar damage variables were widely used for isotropic or one-dimensional phenomenological damage models. The simplicity of a scalar damage representation is indeed very attractive. However, a scalar damage model is of somewhat limited use in practice. In order to entirely characterize the isotropic damage behaviors of damaged materials in multidimensional space, a system theory of isotropic double scalar damage variables, including the expressions of specific damage energy release rate, the coupled constitutive equations corresponding to damage, the conditions of admissibility for two scalar damage effective tensors within the framework of the thermodynamics of irreversible processes, was provided and analyzed in this study. Compared with the former studies, the theoretical formulations of double scalar damage variables in this study are given in the form of matrix, which has many features such as simpleness, directness, convenience and programmable characteristics. It is worth mentioning that the above-mentioned theoretical formulations are only logically reasonable. Owing to the limitations of time, conditions, funds, etc. they should be subject to multifaceted experiments before their innovative significance can be fully verified. The current level of research can be regarded as an exploratory attempt in this field.

음향 및 진동장의 형상을 제어하는 다양한 방법 (A Unified Theory of Spatial Sound and Vibration Control with Multiple Sources)

  • 김양한;최정우
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.126-132
    • /
    • 2006
  • In this paper, we aim to control the sound and vibration spatially, so that a desired physical variable is enhanced within a zone we select. This is somewhat analogous to have manipulators that can draw wave shape in any place we want. Brightness and contrast control have shown that such a manipulation is possible by controlling multiple sources[J.-W. Choi and Y.-H. Kim, J. Acoust. Soc. Am. 111(4), 2002]. In particular, the acoustic brightness control seeks a way to increase loudness of sound over a chosen area, and the contrast control aims to enhance loudness difference between two neighboring regions. This enables us to manipulate spatial distribution of sound by making two different kinds of zone ? the bright and dark zone- at the same time. The primary focus of this study is to unit the theoretical formulation of the brightness and contrast control and to find a link between these methods, as well as its relation to other conventional techniques. It is also shown that we can generate various shape of wave field by transforming the domain we consider.

  • PDF

회귀분석을 이용한 해조류 생물량 측정을 위한 방법론 (Estimation for Seaweed Biomass Using Regression: A Methodological Approach)

  • 고영욱;성건희;김정하
    • ALGAE
    • /
    • 제23권4호
    • /
    • pp.289-294
    • /
    • 2008
  • To estimate seaweed biomass or standing crop, a nondestructive sampling can be beneficial because of not much destroying living plants and saving time in field works. We suggest a methodological procedure to estimate seaweed biomass per unit area in marine benthic habitats by using species-specific regression equations. Percent cover data are required from the field samplings for most species to convert them to weight data. However, for tall macroalgae such as kelps we need density data and their size (e.g., size class for subtidal kelps) of individuals. We propose that the field sampling should be done with 5 replicates of 50 cm x 50 cm quadrat at three zones of intertidals (upper, middle, lower) and three depth points (1, 5, 10 m) in subtidals. To obtain a reliable regression equation for a species, a substantial number of replicate is necessary from destructive samplings. The regression equation of a species can be further specified by different locality and different season, especially for the species with variable morphology temporally and spatially. Example estimation carried out in Onpyung, Jeju Island, Korea is provided to compare estimated values with real weight data.

Recent Brazilian research on thunderstorm winds and their effects on structural design

  • Riera, Jorge D.;Ponte, Jacinto Jr.
    • Wind and Structures
    • /
    • 제15권2호
    • /
    • pp.111-129
    • /
    • 2012
  • Codes for structural design usually assume that the incident mean wind velocity is parallel to the ground, which constitutes a valid simplification for frequent winds caused by sypnoptic events. Wind effects due to other phenomena, such as thunderstorm downbursts, are simply neglected. In this paper, results of recent and ongoing research on this topic in Brazil are presented. The model of the three-dimensional wind velocity field originated from a downburst in a thunderstorm (TS), proposed by Ponte and Riera for engineering applications, is first described. This model allows the generation of a spatially and temporally variable velocity field, which also includes a fluctuating component of the velocity. All parameters are related to meteorological variables, which are susceptible of statistical assessment. An application of the model in the simulation of the wind climate in a region sujected to both EPS and TS winds is discussed next. It is shown that, once the relevant meteorological variables are known, the simulation of the wind excitation for purposes of design of transmission lines, long-span crossings and similar structures is feasible. Complementing the theoretical studies, wind velocity records during a recent TS event in southern Brazil are presented and preliminary conclusions on the validity of the proposed models discussed.

산간분지에서 주택밀도의 결정인자로서 태양광도의 영향력 평가 (Evaluating Explanatory Power of Solar Intensity as Determining Factor of Housing Density in Intermontane Basin)

  • 엄정섭
    • 한국지역지리학회지
    • /
    • 제15권6호
    • /
    • pp.689-706
    • /
    • 2009
  • 주택입지에 영향을 미치는 공간변수의 우선순위를 평가하는 과정은 일부 전문가의 경험과 직관에 의존해 온 것이 사실이다. 산간 분지에서 주택(134채)의 밀도와 태양광도 관련 공간변수의 상관성을 파악하기 위해 다중공간 회귀분석 기법이 활용되었다. 전통적인 이론에서 주택 입지를 설명하는 전형적인 변수인 고도, 경사, 도로에 대한 접근성 등은 주택밀도에 대한 영향력에서 주요 변수로서 역할을 하지 못하였다 동지의 일사량과 일조시간이 산간분지에서 주택밀도를 설명할 수 있는 결정적인 변수였다. 산간분지에서 주택 입지가 전통적인 이론에서 제시하는 고도, 경사 등 이상적인 지형특성보다는 그림자로 인한 음지를 피하는 것을 최우선 순위로 고려하는 것이 확인되었다.

  • PDF

Urban Quality of Life Assessment Using Satellite Image and Socioeconomic Data in GIS

  • Jun, Byong-Woon
    • 대한원격탐사학회지
    • /
    • 제22권5호
    • /
    • pp.325-335
    • /
    • 2006
  • This paper evaluates and maps the quality of life in the Atlanta, Georgia metropolitan area in 2000. Three environmental variables from Landsat TM data, four socioeconomic variables from census data, and a hazard-related variable from toxic release inventory (TRI) database were integrated into a geographic information system (GIS) environment for the quality of life assessment. To solve the incompatibility problem in areal units among different data, the four socioeconomic variables aggregated by zonal units were spatially disaggregated into individual pixels. Principal components analysis (PCA) was employed to integrate and transform environmental, socioeconomic, and hazard-related variables into a resultant quality of life score for each pixel. Results indicate that the highest quality of life score was found around Sandy Springs, Roswell, Alphretta, and the northern parts of Fulton County along Georgia 400 whereas the lowest quality of life score was clustered around Smyma of Cobb County, the inner city of Atlanta, and Hartsfield-Jackson International Airport. The results also reveals that normalized difference vegetation index (NDVI) and relative risk from TRI facilities are two versatile indicators of environmental and socioeconomic quality of an urban area in the United States.

Reliability analysis of strip footing under rainfall using KL-FORM

  • Fei, Suozhu;Tan, Xiaohui;Gong, Wenping;Dong, Xiaole;Zha, Fusheng;Xu, Long
    • Geomechanics and Engineering
    • /
    • 제24권2호
    • /
    • pp.167-178
    • /
    • 2021
  • Spatial variability is an inherent uncertainty of soil properties. Current reliability analyses generally incorporate random field theory and Monte Carlo simulation (MCS) when dealing with spatial variability, in which the computational efficiency is a significant challenge. This paper proposes a KL-FORM algorithm to improve the computational efficiency. In the proposed KL-FORM, Karhunen-Loeve (KL) expansion is used for discretizing random fields, and first-order reliability method (FORM) is employed for reliability analysis. The KL expansion and FORM can be used in conjunction, through adopting independent standard normal variables in the discretization of KL expansion as the basic variables in the FORM. To illustrate the effectiveness of this KL-FORM, it is applied to a case study of a strip footing in spatially variable unsaturated soil under rainfall, in which the bearing capacity of the footing is computed by numerical simulation. This case study shows that the KL-FORM is accurate and efficient. The parametric analyses suggest that ignoring the spatial variability of the soil may lead to an underestimation of the reliability index of the footing.

Estimation of spatial distribution of precipitation by using of dual polarization weather radar data

  • Oliaye, Alireza;Bae, Deg-Hyo
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.132-132
    • /
    • 2021
  • Access to accurate spatial precipitation in many hydrological studies is necessary. Existence of many mountains with diverse topography in South Korea causes different spatial distribution of precipitation. Rain gauge stations show accurate precipitation information in points, but due to the limited use of rain gauge stations and the difficulty of accessing them, there is not enough accurate information in the whole area. Weather radars can provide an integrated precipitation information spatially. Despite this, weather radar data have some errors that can not provide accurate data, especially in heavy rainfall. In this study, some location-based variable like aspect, elevation, plan curvature, profile curvature, slope and distance from the sea which has most effect on rainfall was considered. Then Automatic Weather Station data was used for spatial training of variables in each event. According to this, K-fold cross-validation method was combined with Adaptive Neuro-Fuzzy Inference System. Based on this, 80% of Automatic Weather Station data was used for training and validation of model and 20% was used for testing and evaluation of model. Finally, spatial distribution of precipitation for 1×1 km resolution in Gwangdeoksan radar station was estimates. The results showed a significant decrease in RMSE and an increase in correlation with the observed amount of precipitation.

  • PDF