• Title/Summary/Keyword: spatial-temporal model

Search Result 796, Processing Time 0.024 seconds

Water quality prediction of inflow of the Yongdam Dam basin and its reservoir using SWAT and CE-QUAL-W2 models in series to climate change scenarios (SWAT 및 CE-QUAL-W2 모델을 연계 활용한 기후변화 시나리오에 따른 용담댐 유입수 및 호내 수질 변화 예측)

  • Park, Jongtae;Jang, Yujin;Seo, Dongil
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.10
    • /
    • pp.703-714
    • /
    • 2017
  • This paper analyzes the impact of two climate change scenarios on flow rate and water quality of the Yongdam Dam and its basin using CE-QUAL-W2 and SWAT, respectively. Under RCP 4.5 and RCP 8.5 scenarios by IPCC, simulations were performed for 2016~2095, and the results were rearranged into three separate periods; 2016~2035, 2036~2065 and 2066~2095. Also, the result of each year was divided as dry season (May~Oct) and wet season (Nov~Apr) to account for rainfall effect. For total simulation period, arithmetic average of flow rate and TSS (Total Suspended Solid) and TP (Total Phosphorus) were greater for RCP 4.5 than those of RCP 8.5, whereas TN (Total Nitrogen) showed contrary results. However, when averaged within three periods and rainfall conditions the tendencies were different from each other. As the scenarios went on, the number of rainfall days has decreased and the rainfall intensities have increased. These resulted in waste load discharge from the basin being decreased during the dry period and it being increased in the wet period. The results of SWAT model were used as boundary conditions of CE-QUAL-W2 model to predict water level and water quality changes in the Yongdam Dam. TSS and TP tend to increase during summer periods when rainfalls are higher, while TN shows the opposite pattern due to its weak absorption to particulate materials. Therefore, the climate change impact must be carefully analyzed when temporal and spatial conditions of study area are considered, and water quantity and water quality management alternatives must be case specific.

Parameter Sensitivity Analysis for Spatial and Temporal Temperature Simulation in the Hapcheon Dam Reservoir (합천댐 저수지에서의 시공간적 수온모의를 위한 매개변수 민감도 분석)

  • Kim, Boram;Kang, Boosik
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.12
    • /
    • pp.1181-1191
    • /
    • 2013
  • This study have implemented finding the optimal water temperature parameter set for Hapcheon dam reservoir using CE-QUAL-W2 model. In particular the sensitivity analysis was carried out for four water temperature parameters of wind sheltering coefficient (WSC), radiation heat coefficient (BETA), light extinction coefficient (EXH2O), heat exchange coefficient at the channel bed (CBHE). Firstly, WSC, BETA, EXH2O shows relatively high sensitivity in common during April to September, and CBHE does during August to November. Secondly, as a result of identifying depth range of parameter influence, BETA and EXH2O show 0~9 m and 8~14 m which is thermocline layer close to water surface, CBHE is deep layer 12 m away from bottom. Finally, applying annual or monthly optimal parameter sets indicates that the bias between two sets does not show much differences for WSC and CBHE parameters, but BETA and EXH2O parameters show $0.20^{\circ}C$ and $0.51^{\circ}C$ of monthly average biases for two parameter sets. In particular the bias reveals to be $0.4^{\circ}C$ and $1.09^{\circ}C$ during May and August that confirms the necessity of use of monthly parameters during that season. It is claimed that the current operational custom use of annual parameters in calibration of reservoir water quality model requires the improvement of using monthly parameters.

The Factors Affecting the Population Outflow from Busan to the Seoul Metropolitan Area (지역별 수도권으로의 인구유출에 영향을 미치는 요인 연구: 부산시 사례를 중심으로)

  • LIM, Jaebin;Jeong, Kiseong
    • Land and Housing Review
    • /
    • v.12 no.2
    • /
    • pp.47-59
    • /
    • 2021
  • This study aims to review the trends of the population outflows in the metropolitan area of Busan and to investigate the factors that affect population out-migration to the Seoul metropolitan area. The following variables are considered for analysis: traditional population movement variables and quality of life variables, such as population, society, employment, housing, culture, safety, medical care, greenery, education, and childcare. The 'domestic population movement data', provided by the MDIS of the National Statistical Office, was used for this research. Out of the total of 57 million population movement data in the period 2012 - 2017, population outmigration from Busan to the Seoul metropolitan area was extracted. Independent variables were drawn from public data sources in accordance with the temporal and spatial settings of the study. The multiple linear regression model was specified based on the dataset, and the fit of the model was measured by the p-value, and the values of Adjusted R2, Durbin-Watson analysis, and F-statistics. The results of the analysis showed that the variables that have a significant effect on population movement from Busan to the Seoul metropolitan area were as follows: 'single-person households', 'the elderly population', 'the total birth rate', 'the number of companies', 'the number of employees', 'the housing sales price index', 'cultural facilities', and 'the number of students per teacher'. More positive (+) influences of the population out-movement were observed in areas with higher numbers of single-person households, lowers proportions of the elderly, lower numbers of businesses, higher numbers of employees, higher numbers of housing sales, lower numbers of cultural facilities, and lower numbers of students. The findings suggest that policies should enhance the environments such as quality jobs, culture, and welfare that can retain young people within Busan. Improvements in the quality of life and job creation are critical factors that can mitigate the outflows of the Busan residents to the Seoul metropolitan area.

Development of Seasonal Habitat Suitability Indices for the Todarodes Pacificus around South Korea Based on GOCI Data (GOCI 자료를 활용한 한국 연근해 살오징어의 계절별 서식적합지수 모델 개발)

  • Seonju Lee;Jong-Kuk Choi;Myung-Sook Park;Sang Woo Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_2
    • /
    • pp.1635-1650
    • /
    • 2023
  • Under global warming, the steadily increasing sea surface temperature (SST) severely impacts marine ecosystems,such as the productivity decrease and change in marine species distribution. Recently, the catch of Todarodes Pacificus, one of South Korea's primary marine resources, has dramatically decreased. In this study, we analyze the marine environment that affects the formation of fishing grounds of Todarodes Pacificus and develop seasonal habitat suitability index (HSI) models based on various satellite data including Geostationary Ocean Color Imager (GOCI) data to continuously manage fisheries resources over Korean exclusive economic zone. About 83% of catches are found within the range of SST of 14.11-26.16℃,sea level height of 0.56-0.82 m, chlorophyll-a concentration of 0.31-1.52 mg m-3, and primary production of 580.96-1574.13 mg C m-2 day-1. The seasonal HSI models are developed using the Arithmetic Mean Model, which showed the best performance. Comparing the developed HSI value with the 2019 catch data, it is confirmed that the HSI model is valid because the fishing grounds are formed in different sea regions by season (East Sea in winter and Yellow Sea in summer) and the high HSI (> 0.6) concurrences to areas with the high catch. In addition, we identified the significant increasing trend in SST over study regions, which is highly related to the formation of fishing grounds of Todarodes Pacificus. We can expect the fishing grounds will be changed by accelerating ocean warming in the future. Continuous HSI monitoring is necessary to manage fisheries' spatial and temporal distribution.

Retrieval of Hourly Aerosol Optical Depth Using Top-of-Atmosphere Reflectance from GOCI-II and Machine Learning over South Korea (GOCI-II 대기상한 반사도와 기계학습을 이용한 남한 지역 시간별 에어로졸 광학 두께 산출)

  • Seyoung Yang;Hyunyoung Choi;Jungho Im
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_3
    • /
    • pp.933-948
    • /
    • 2023
  • Atmospheric aerosols not only have adverse effects on human health but also exert direct and indirect impacts on the climate system. Consequently, it is imperative to comprehend the characteristics and spatiotemporal distribution of aerosols. Numerous research endeavors have been undertaken to monitor aerosols, predominantly through the retrieval of aerosol optical depth (AOD) via satellite-based observations. Nonetheless, this approach primarily relies on a look-up table-based inversion algorithm, characterized by computationally intensive operations and associated uncertainties. In this study, a novel high-resolution AOD direct retrieval algorithm, leveraging machine learning, was developed using top-of-atmosphere reflectance data derived from the Geostationary Ocean Color Imager-II (GOCI-II), in conjunction with their differences from the past 30-day minimum reflectance, and meteorological variables from numerical models. The Light Gradient Boosting Machine (LGBM) technique was harnessed, and the resultant estimates underwent rigorous validation encompassing random, temporal, and spatial N-fold cross-validation (CV) using ground-based observation data from Aerosol Robotic Network (AERONET) AOD. The three CV results consistently demonstrated robust performance, yielding R2=0.70-0.80, RMSE=0.08-0.09, and within the expected error (EE) of 75.2-85.1%. The Shapley Additive exPlanations(SHAP) analysis confirmed the substantial influence of reflectance-related variables on AOD estimation. A comprehensive examination of the spatiotemporal distribution of AOD in Seoul and Ulsan revealed that the developed LGBM model yielded results that are in close concordance with AERONET AOD over time, thereby confirming its suitability for AOD retrieval at high spatiotemporal resolution (i.e., hourly, 250 m). Furthermore, upon comparing data coverage, it was ascertained that the LGBM model enhanced data retrieval frequency by approximately 8.8% in comparison to the GOCI-II L2 AOD products, ameliorating issues associated with excessive masking over very illuminated surfaces that are often encountered in physics-based AOD retrieval processes.

Sentiment Analysis of Movie Review Using Integrated CNN-LSTM Mode (CNN-LSTM 조합모델을 이용한 영화리뷰 감성분석)

  • Park, Ho-yeon;Kim, Kyoung-jae
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.4
    • /
    • pp.141-154
    • /
    • 2019
  • Rapid growth of internet technology and social media is progressing. Data mining technology has evolved to enable unstructured document representations in a variety of applications. Sentiment analysis is an important technology that can distinguish poor or high-quality content through text data of products, and it has proliferated during text mining. Sentiment analysis mainly analyzes people's opinions in text data by assigning predefined data categories as positive and negative. This has been studied in various directions in terms of accuracy from simple rule-based to dictionary-based approaches using predefined labels. In fact, sentiment analysis is one of the most active researches in natural language processing and is widely studied in text mining. When real online reviews aren't available for others, it's not only easy to openly collect information, but it also affects your business. In marketing, real-world information from customers is gathered on websites, not surveys. Depending on whether the website's posts are positive or negative, the customer response is reflected in the sales and tries to identify the information. However, many reviews on a website are not always good, and difficult to identify. The earlier studies in this research area used the reviews data of the Amazon.com shopping mal, but the research data used in the recent studies uses the data for stock market trends, blogs, news articles, weather forecasts, IMDB, and facebook etc. However, the lack of accuracy is recognized because sentiment calculations are changed according to the subject, paragraph, sentiment lexicon direction, and sentence strength. This study aims to classify the polarity analysis of sentiment analysis into positive and negative categories and increase the prediction accuracy of the polarity analysis using the pretrained IMDB review data set. First, the text classification algorithm related to sentiment analysis adopts the popular machine learning algorithms such as NB (naive bayes), SVM (support vector machines), XGboost, RF (random forests), and Gradient Boost as comparative models. Second, deep learning has demonstrated discriminative features that can extract complex features of data. Representative algorithms are CNN (convolution neural networks), RNN (recurrent neural networks), LSTM (long-short term memory). CNN can be used similarly to BoW when processing a sentence in vector format, but does not consider sequential data attributes. RNN can handle well in order because it takes into account the time information of the data, but there is a long-term dependency on memory. To solve the problem of long-term dependence, LSTM is used. For the comparison, CNN and LSTM were chosen as simple deep learning models. In addition to classical machine learning algorithms, CNN, LSTM, and the integrated models were analyzed. Although there are many parameters for the algorithms, we examined the relationship between numerical value and precision to find the optimal combination. And, we tried to figure out how the models work well for sentiment analysis and how these models work. This study proposes integrated CNN and LSTM algorithms to extract the positive and negative features of text analysis. The reasons for mixing these two algorithms are as follows. CNN can extract features for the classification automatically by applying convolution layer and massively parallel processing. LSTM is not capable of highly parallel processing. Like faucets, the LSTM has input, output, and forget gates that can be moved and controlled at a desired time. These gates have the advantage of placing memory blocks on hidden nodes. The memory block of the LSTM may not store all the data, but it can solve the CNN's long-term dependency problem. Furthermore, when LSTM is used in CNN's pooling layer, it has an end-to-end structure, so that spatial and temporal features can be designed simultaneously. In combination with CNN-LSTM, 90.33% accuracy was measured. This is slower than CNN, but faster than LSTM. The presented model was more accurate than other models. In addition, each word embedding layer can be improved when training the kernel step by step. CNN-LSTM can improve the weakness of each model, and there is an advantage of improving the learning by layer using the end-to-end structure of LSTM. Based on these reasons, this study tries to enhance the classification accuracy of movie reviews using the integrated CNN-LSTM model.

Visualization and Localization of Fusion Image Using VRML for Three-dimensional Modeling of Epileptic Seizure Focus (VRML을 이용한 융합 영상에서 간질환자 발작 진원지의 3차원적 가시화와 위치 측정 구현)

  • 이상호;김동현;유선국;정해조;윤미진;손혜경;강원석;이종두;김희중
    • Progress in Medical Physics
    • /
    • v.14 no.1
    • /
    • pp.34-42
    • /
    • 2003
  • In medical imaging, three-dimensional (3D) display using Virtual Reality Modeling Language (VRML) as a portable file format can give intuitive information more efficiently on the World Wide Web (WWW). The web-based 3D visualization of functional images combined with anatomical images has not studied much in systematic ways. The goal of this study was to achieve a simultaneous observation of 3D anatomic and functional models with planar images on the WWW, providing their locational information in 3D space with a measuring implement using VRML. MRI and ictal-interictal SPECT images were obtained from one epileptic patient. Subtraction ictal SPECT co-registered to MRI (SISCOM) was performed to improve identification of a seizure focus. SISCOM image volumes were held by thresholds above one standard deviation (1-SD) and two standard deviations (2-SD). SISCOM foci and boundaries of gray matter, white matter, and cerebrospinal fluid (CSF) in the MRI volume were segmented and rendered to VRML polygonal surfaces by marching cube algorithm. Line profiles of x and y-axis that represent real lengths on an image were acquired and their maximum lengths were the same as 211.67 mm. The real size vs. the rendered VRML surface size was approximately the ratio of 1 to 605.9. A VRML measuring tool was made and merged with previous VRML surfaces. User interface tools were embedded with Java Script routines to display MRI planar images as cross sections of 3D surface models and to set transparencies of 3D surface models. When transparencies of 3D surface models were properly controlled, a fused display of the brain geometry with 3D distributions of focal activated regions provided intuitively spatial correlations among three 3D surface models. The epileptic seizure focus was in the right temporal lobe of the brain. The real position of the seizure focus could be verified by the VRML measuring tool and the anatomy corresponding to the seizure focus could be confirmed by MRI planar images crossing 3D surface models. The VRML application developed in this study may have several advantages. Firstly, 3D fused display and control of anatomic and functional image were achieved on the m. Secondly, the vector analysis of a 3D surface model was defined by the VRML measuring tool based on the real size. Finally, the anatomy corresponding to the seizure focus was intuitively detected by correlations with MRI images. Our web based visualization of 3-D fusion image and its localization will be a help to online research and education in diagnostic radiology, therapeutic radiology, and surgery applications.

  • PDF

Functional Modifications of Daechung Reservoir Eutrophication by Upper Dam Construction (상류댐 건설에 따른 대청호 부영양화에 대한 기능 변화)

  • Lee, Soon-Cheol;Han, Jung-Ho;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.3
    • /
    • pp.348-359
    • /
    • 2008
  • The objectives of the study were to elucidate functional modifications in relation to hydrological, physico-chemical and ecological aspects in Daechung Reservoir by the upper dam constructions of Youngdam Reservoir and analyze temporal and spatial dynamic patterns using trophic parameters of TN, TP, chlorophyll (CHL), and Secchi depth (SD). Hydrological data such as inflow, precipitation, and water levels before (BDC, 1995$\sim$2000) and after (ADC, 2001$\sim$2006) the dam construction showed that precipitation had greater correlations with inflow volume in the BDC (r=0.964, p=0.002) than in the ADC (r=0.857, p=0.029). This outcome indicates that the upper dam construction influenced the inflow and water level of Daechung Reservoir. One of the greatest changes after the dam construction was decreases of nutrient contents (TN, TP) and increases of algal biomass (as CHL) as the water residence time increases. Values of CHL had greater relations with TP in the ADC (r=0.412, p<0.001) than the BDC (r=0.249, p<0.001), indicating that CHL had greater response at a given phosphorus in the ADC. Thus, algal yield at a given TP (CHL : TP ratios) increased in the ADC, resulting in a greater CHL-TP relations. Long-term interannual TP, TN, SD, and CHL showed greater variations in the riverine zone (RZ) than any other transition (TZ) and lacustrine zones (LZ). This phenomenon was mainly attributed to rapid hydrological response in the riverine zone (RZ) to flow reductions (short water residence time) from the upper dam, resulting in ambient contents of nutrients and light regime along with functional relations of CHL-TP.

Outlook on Variation of Water Resources in Korea under SRES A2 Scenario (A2 시나리오에 따른 국내 수자원의 변동성 전망)

  • Bae, Deg-Hyo;Jung, Il-Won;Lee, Byong-Ju
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.12
    • /
    • pp.921-930
    • /
    • 2007
  • The objective of this study is to present temporal-spatial variation of water resources on climate change impacts using the IPCC SRES A2 scenario and dynamical downscaling of the results (using the MM5 model with a resolution of 27km by 27km) at 139 sub-basins in Korea. The variation of runoff shows differences in the change of rate according to the each sub-basins and analysis durations. It has increased in the sub-basins located in Han river basin and east part of it, the other basins have decreased. In seasonal analysis, runoff in autumn and winter have increased, while in spring and summer have decreased. The results of frequency analyzing classified runoff(Low flow(Q$\leq$5mm), Normal flow(5$\geq$100mm)) show that low flow increase in most of the sub-basins for 2031-2060 and 2061-2090. In the case of high flow, it have higher frequency ranging from -100% to 500% than low flow. Regardless of the variation of mean runoff, maximum discharge appeared to be increase in process of time. The regression method is used to figure out the relationship between the rate of runoff change and mean temperature, mean precipitation under A2 scenario. The mean actual evapotranspirations from the regression equations increased by 3.4$\sim$5.3% for the change of $1^{\circ}C$. Also, for the precipitation change of $\pm$10%, runoff variety range is -18.2$\sim$+12.4% in Han River, -21.6$\sim$+14.6% in Nakdong River, -17.5$\sim$+11.5% in Gum River, -18.4$\sim$+10.6% in Sumjin River, -19.9$\sim$+12.7% Youngsan River basin.

Plant Hardiness Zone Mapping Based on a Combined Risk Analysis Using Dormancy Depth Index and Low Temperature Extremes - A Case Study with "Campbell Early" Grapevine - (최저기온과 휴면심도 기반의 동해위험도를 활용한 'Campbell Early' 포도의 내동성 지도 제작)

  • Chung, U-Ran;Kim, Soo-Ock;Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.10 no.4
    • /
    • pp.121-131
    • /
    • 2008
  • This study was conducted to delineate temporal and spatial patterns of potential risk of cold injury by combining the short-term cold hardiness of Campbell Early grapevine and the IPCC projected climate winter season minimum temperature at a landscape scale. Gridded data sets of daily maximum and minimum temperature with a 270m cell spacing ("High Definition Digital Temperature Map", HD-DTM) were prepared for the current climatological normal year (1971-2000) based on observations at the 56 Korea Meteorological Administration (KMA) stations using a geospatial interpolation scheme for correcting land surface effects (e.g., land use, topography, and elevation). The same procedure was applied to the official temperature projection dataset covering South Korea (under the auspices of the IPCC-SRES A2 and A1B scenarios) for 2071-2100. The dormancy depth model was run with the gridded datasets to estimate the geographical pattern of any changes in the short-term cold hardiness of Campbell Early across South Korea for the current and future normal years (1971-2000 and 2071-2100). We combined this result with the projected mean annual minimum temperature for each period to obtain the potential risk of cold injury. Results showed that both the land areas with the normal cold-hardiness (-150 and below for dormancy depth) and those with the sub-threshold temperature for freezing damage ($-15^{\circ}C$ and below) will decrease in 2071-2100, reducing the freezing risk. Although more land area will encounter less risk in the future, the land area with higher risk (>70%) will expand from 14% at the current normal year to 23 (A1B) ${\sim}5%$ (A2) in the future. Our method can be applied to other deciduous fruit trees for delineating geographical shift of cold-hardiness zone under the projected climate change in the future, thereby providing valuable information for adaptation strategy in fruit industry.