• Title/Summary/Keyword: spatial statistics

Search Result 656, Processing Time 0.022 seconds

A Study on Asset Preference Characteristics of Millennials and Gen Z

  • Eun-sung PARK;Jae-tae KIM
    • The Journal of Economics, Marketing and Management
    • /
    • v.11 no.4
    • /
    • pp.19-30
    • /
    • 2023
  • Purpose: This study examines the factors that the Millennials and Gen Z prefers to invest in assets. We look at the asset structure they want now and in the future and the idea of designing the future. This can be expected that the center of Korea's asset market will change to the structure they want in the future. Research design, data and methodology: The spatial extent of the study is all over Korea including Seoul, the metropolitan area, and local cities. The survey was conducted for about 16 days from May 7 to May 22, 2023. The survey was conducted by the surveyor visiting the subject in person, distributing the questionnaire, explaining it, and filling it out in person. For the analysis, descriptive statistics and logistic regression analysis were conducted using the SPSS 25.0 statistical package. Results: It was confirmed that the preferred assets of the Millennials and Gen Z were different by period. There was also a difference in the influencing factors between Millennial Generation and Generation Z in asset preference. Conclusions: The Millennials and Gen Z's preferred assets were different by period. The reason is interpreted as the current process of collecting assets during the asset formation period. In the future, they intend to purchase real estate assets by using financial assets as a lump sum of money. We learned the characteristics of the entire Millennials and Gen Z, in addition, the difference between income and assets is believed to have affected the difference in preference factors of Millennial Generation and Generation Z, respectively.

An Investigation of the Spatial Transition in Naju City via Space Syntax Framework (나주시 공간구조 변화에 관한 공간구문론적 고찰)

  • Byeong-Sam OH;Nae-Young CHOEI
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.26 no.1
    • /
    • pp.114-131
    • /
    • 2023
  • The study empirically delves into the longitudinal transition of the urban core of Naju City in Korea. For the purpose, the ASA (Angular Segment Analysis) technique of Space Syntax has been adopted to investigate the cadastral maps on the GIS platform for the five chosen years since 1920. In particular, the global integration map as well as box plot statistics have been used to capture the time-series consequences. The findings indicate that the old downtown is no more a monocentric city core and the center of the City has far moved eastward near the new Gwangju-Jeonam Innovation City especially during the period between 2000 and 2020.

Development of a Short-term Rainfall Forecast Model Using Sequential CAPPI Data (연속 CAPPI 자료를 이용한 단기강우예측모형 개발)

  • Kim, Gwangseob;Kim, Jong Pil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6B
    • /
    • pp.543-550
    • /
    • 2009
  • The traditional simple extrapolation type short term quantitative rainfall forecast can not realize the evolution of rainfall generating weather system. To overcome the drawback of the linear extrapolation type rainfall forecasting model, the history of a weather system from sequential weather radar information and a polynomial regression technique were used to generate forecast fileds of x-directional, y-directional velocities and radar reflectivity which considered the nonlinear behavior related to the evolution of weather systems. Results demonstrated that test statistics of forecasts using the developed model is better than that of 2-CAPPI forecast. However there is still a large room to improve the forecast of spatial and temporal evolution of local storms since the model is not based on a fully physical approach but a statistical approach.

Mapping the Potential Distribution of Raccoon Dog Habitats: Spatial Statistics and Optimized Deep Learning Approaches

  • Liadira Kusuma Widya;Fatemah Rezaie;Saro Lee
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • v.4 no.4
    • /
    • pp.159-176
    • /
    • 2023
  • The conservation of the raccoon dog (Nyctereutes procyonoides) in South Korea requires the protection and preservation of natural habitats while additionally ensuring coexistence with human activities. Applying habitat map modeling techniques provides information regarding the distributional patterns of raccoon dogs and assists in the development of future conservation strategies. The purpose of this study is to generate potential habitat distribution maps for the raccoon dog in South Korea using geospatial technology-based models. These models include the frequency ratio (FR) as a bivariate statistical approach, the group method of data handling (GMDH) as a machine learning algorithm, and convolutional neural network (CNN) and long short-term memory (LSTM) as deep learning algorithms. Moreover, the imperialist competitive algorithm (ICA) is used to fine-tune the hyperparameters of the machine learning and deep learning models. Moreover, there are 14 habitat characteristics used for developing the models: elevation, slope, valley depth, topographic wetness index, terrain roughness index, slope height, surface area, slope length and steepness factor (LS factor), normalized difference vegetation index, normalized difference water index, distance to drainage, distance to roads, drainage density, and morphometric features. The accuracy of prediction is evaluated using the area under the receiver operating characteristic curve. The results indicate comparable performances of all models. However, the CNN demonstrates superior capacity for prediction, achieving accuracies of 76.3% and 75.7% for the training and validation processes, respectively. The maps of potential habitat distribution are generated for five different levels of potentiality: very low, low, moderate, high, and very high.

Aviation Convective Index for Deep Convective Area using the Global Unified Model of the Korean Meteorological Administration, Korea: Part 2. Seasonal Optimization and Case Studies (안전한 항공기 운항을 위한 현업 전지구예보모델 기반 깊은 대류 예측 지수: Part 2. 계절별 최적화 및 사례 분석)

  • Yi-June Park;Jung-Hoon Kim
    • Atmosphere
    • /
    • v.33 no.5
    • /
    • pp.531-548
    • /
    • 2023
  • We developed the Aviation Convective Index (ACI) for predicting deep convective area using the operational global Numerical Weather Prediction model of the Korea Meteorological Administration. Seasonally optimized ACI (ACISnOpt) was developed to consider seasonal variabilities on deep convections in Korea. Yearly optimized ACI (ACIYrOpt) in Part 1 showed that seasonally averaged values of Area Under the ROC Curve (AUC) and True Skill Statistics (TSS) were decreased by 0.420% and 5.797%, respectively, due to the significant degradation in winter season. In Part 2, we developed new membership function (MF) and weight combination of input variables in the ACI algorithm, which were optimized in each season. Finally, the seasonally optimized ACI (ACISnOpt) showed better performance skills with the significant improvements in AUC and TSS by 0.983% and 25.641% respectively, compared with those from the ACIYrOpt. To confirm the improvements in new algorithm, we also conducted two case studies in winter and spring with observed Convectively-Induced Turbulence (CIT) events from the aircraft data. In these cases, the ACISnOpt predicted a better spatial distribution and intensity of deep convection. Enhancements in the forecast fields from the ACIYrOpt to ACISnOpt in the selected cases explained well the changes in overall performance skills of the probability of detection for both "yes" and "no" occurrences of deep convection during 1-yr period of the data. These results imply that the ACI forecast should be optimized seasonally to take into account the variabilities in the background conditions for deep convections in Korea.

Characterization of Brain Microstructural Abnormalities in High Myopia Patients: A Preliminary Diffusion Kurtosis Imaging Study

  • Huihui Wang;Hongwei Wen;Jing Li;Qian Chen;Shanshan Li;Yanling Wang;Zhenchang Wang
    • Korean Journal of Radiology
    • /
    • v.22 no.7
    • /
    • pp.1142-1151
    • /
    • 2021
  • Objective: To evaluate microstructural damage in high myopia (HM) patients using 3T diffusion kurtosis imaging (DKI). Materials and Methods: This prospective study included 30 HM patients and 33 age- and sex-matched healthy controls (HCs) with DKI. Kurtosis parameters including kurtosis fractional anisotropy (FA), mean kurtosis (MK), axial kurtosis (AK), and radial kurtosis (RK) as well as diffusion metrics including FA, mean diffusivity, axial diffusivity (AD), and radial diffusivity derived from DKI were obtained. Group differences in these metrics were compared using tract-based spatial statistics. Partial correlation analysis was used to evaluate correlations between microstructural changes and disease duration. Results: Compared to HCs, HM patients showed significantly reduced AK, RK, MK, and FA and significantly increased AD, predominately in the bilateral corticospinal tract, right inferior longitudinal fasciculus, superior longitudinal fasciculus, inferior fronto-occipital fasciculus, and left thalamus (all p < 0.05, threshold-free cluster enhancement corrected). In addition, DKI-derived kurtosis parameters (AK, RK, and MK) had negative correlations (r = -0.448 to -0.376, all p < 0.05) and diffusion parameter (AD) had positive correlations (r = 0.372 to 0.409, all p < 0.05) with disease duration. Conclusion: HM patients showed microstructural alterations in the brain regions responsible for motor conduction and vision-related functions. DKI is useful for detecting white matter abnormalities in HM patients, which might be helpful for exploring and monitoring the pathogenesis of the disease.

A Study on the Correlation Between Homeownership and Human and Social Characteristics - Focused on Mokpo City - (주택 점유형태와 인문사회적 특성간의 상관관계 연구 - 목포시를 중심으로 -)

  • Park, Jungil
    • Journal of Cadastre & Land InformatiX
    • /
    • v.54 no.1
    • /
    • pp.117-134
    • /
    • 2024
  • Housing is an essential element of human living environments. The type of housing occupancy can vary based on age, family composition, occupation, education level, and economic situation. In this study, we used social survey statistics to investigate the relationship between housing ownership types and individual and societal characteristics. The research findings revealed that apartment residency rates were high across all age groups. Married individuals tended to have higher apartment residency rates compared to unmarried individuals. Additionally, as the number of household members and generations increased, so did the likelihood of apartment residency. Overall, higher income levels and stable employment were associated with a preference for homeownership. However, there was no significant correlation between homeownership and education level or employment status. National and local authorities should focus on housing supply that aligns with the purchasing capacity and characteristics of potential homebuyers.

A Study on the Availability of Spatial and Statistical Data for Assessing CO2 Absorption Rate in Forests - A Case Study on Ansan-si - (산림의 CO2 흡수량 평가를 위한 통계 및 공간자료의 활용성 검토 - 안산시를 대상으로 -)

  • Kim, Sunghoon;Kim, Ilkwon;Jun, Baysok;Kwon, Hyuksoo
    • Journal of Environmental Impact Assessment
    • /
    • v.27 no.2
    • /
    • pp.124-138
    • /
    • 2018
  • This research was conducted to examine the availability of spatial data for assessing absorption rates of $CO_2$ in the forest of Ansan-si and evaluate the validity of methods that analyze $CO_2$ absorption. To statistically assess the $CO_2$ absorption rates per year, the 1:5,000 Digital Forest-Map (Lim5000) and Standard Carbon Removal of Major Forest Species (SCRMF) methods were employed. Furthermore, Land Cover Map (LCM) was also used to verify $CO_2$ absorption rate availability per year. Great variations in $CO_2$ absorption rates occurred before and after the year 2010. This was due to improvement in precision and accuracy of the Forest Basic Statistics (FBS) in 2010, which resulted in rapid increase in growing stock. Thus, calibration of data prior to 2010 is necessary, based on recent FBS standards. Previous studies that employed Lim5000 and FBS (2015, 2010) did not take into account the $CO_2$ absorption rates of different tree species, and the combination of SCRMF and Lim5000 resulted in $CO_2$ absorption of 42,369 ton. In contrast to the combination of SCRMF and Lim5000, LCM and SCRMF resulted in $CO_2$ absorption of 40,696 ton. Homoscedasticity tests for Lim5000 and LCM resulted in p-value <0.01, with a difference in $CO_2$ absorption of 1,673 ton. Given that $CO_2$ absorption in forests is an important factor that reduces greenhouse gas emissions, the findings of this study should provide fundamental information for supporting a wide range of decision-making processes for land use and management.

A Suggestion for Spatiotemporal Analysis Model of Complaints on Officially Assessed Land Price by Big Data Mining (빅데이터 마이닝에 의한 공시지가 민원의 시공간적 분석모델 제시)

  • Cho, Tae In;Choi, Byoung Gil;Na, Young Woo;Moon, Young Seob;Kim, Se Hun
    • Journal of Cadastre & Land InformatiX
    • /
    • v.48 no.2
    • /
    • pp.79-98
    • /
    • 2018
  • The purpose of this study is to suggest a model analysing spatio-temporal characteristics of the civil complaints for the officially assessed land price based on big data mining. Specifically, in this study, the underlying reasons for the civil complaints were found from the spatio-temporal perspectives, rather than the institutional factors, and a model was suggested monitoring a trend of the occurrence of such complaints. The official documents of 6,481 civil complaints for the officially assessed land price in the district of Jung-gu of Incheon Metropolitan City over the period from 2006 to 2015 along with their temporal and spatial poperties were collected and used for the analysis. Frequencies of major key words were examined by using a text mining method. Correlations among mafor key words were studied through the social network analysis. By calculating term frequency(TF) and term frequency-inverse document frequency(TF-IDF), which correspond to the weighted value of key words, I identified the major key words for the occurrence of the civil complaint for the officially assessed land price. Then the spatio-temporal characteristics of the civil complaints were examined by analysing hot spot based on the statistics of Getis-Ord $Gi^*$. It was found that the characteristic of civil complaints for the officially assessed land price were changing, forming a cluster that is linked spatio-temporally. Using text mining and social network analysis method, we could find out that the occurrence reason of civil complaints for the officially assessed land price could be identified quantitatively based on natural language. TF and TF-IDF, the weighted averages of key words, can be used as main explanatory variables to analyze spatio-temporal characteristics of civil complaints for the officially assessed land price since these statistics are different over time across different regions.

Analysis of Land Cover Classification and Pattern Using Remote Sensing and Spatial Statistical Method - Focusing on the DMZ Region in Gangwon-Do - (원격탐사와 공간통계 기법을 이용한 토지피복 분류 및 패턴 분석 - 강원도 DMZ일원을 대상으로 -)

  • NA, Hyun-Sup;PARK, Jeong-Mook;LEE, Jung-Soo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.18 no.4
    • /
    • pp.100-118
    • /
    • 2015
  • This study established a land-cover classification method on objects using satellite images, and figured out distributional patterns of land cover according to categories through spatial statistics techniques. Object-based classification generated each land cover classification map by spectral information, texture information, and the combination of the two. Through assessment of accuracy, we selected optimum land cover classification map. Also, to figure out spatial distribution pattern of land cover according to categories, we analyzed hot spots and quantified them. Optimal weight for an object-based classification has been selected as the Scale 52, Shape 0.4, Color 0.6, Compactness 0.5, Smoothness 0.5. In case of using the combination of spectral information and texture information, the land cover classification map showed the best overall classification accuracy. Particularly in case of dry fields, protected cultivation, and bare lands, the accuracy has increased about 12 percent more than when we used only spectral information. Forest, paddy fields, transportation facilities, grasslands, dry fields, bare lands, buildings, water and protected cultivation in order of the higher area ratio of DMZ according to categories. Particularly, dry field sand transportation facilities in Yanggu occurred mainly in north areas of the civilian control line. dry fields in Cheorwon, forest and transportation facilities in Inje fulfilled actively in south areas of the civilian control line. In case of distributional patterns according to categories, hot spot of paddy fields, dry fields and protected cultivation, which is related to agriculture, was distributed intensively in plains of Yanggu and in basin areas of Cheorwon. Hot spot areas of bare lands, waters, buildings and roads have similar distribution patterns with hot spot areas related to agriculture, while hot spot areas of bare lands, water, buildings and roads have different distributional patterns with hot spot areas of forest and grasslands.