• Title/Summary/Keyword: spatial spectrum method

Search Result 132, Processing Time 0.024 seconds

Method of vegetation spectrum measurement using multi spectrum camera

  • Takafuji, Yoshifumi.;Kajiwara, Koji.;Honda, Yoshiaki.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.570-572
    • /
    • 2003
  • In this paper, a method of vegetation spectrum measurement using multi spectrum camera was studied. Each pixel in taken images using multi spectrum camera have spectrum data, the relationship between spectrum data and distribution, structure, etc. are directly turned out. In other words, detailed spectrum data information of object including spatial distribution can be obtained from those images. However, the camera has some problems for applying field measurement and data analysis. In this study, those problems are solved.

  • PDF

Experimental Study of Backscattered Underwater Signals from Multiple Scatterers (다중 산란체에 의한 수중 산란신호 실험연구)

  • Kim, Eunhye;Yoon, Kwan-seob;Jungyul Na
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.1E
    • /
    • pp.31-39
    • /
    • 2004
  • Backscattered underwater signals from multiple scatterers contain information regarding resolvable spatial distribution of scatterers. This experimental study describes the spectral characteristics of backscattered signal from multiple scatterers, which are regularly or randomly spaced, in terms of their amplitude and phase and a proper signal analysis that will eventually provide scatterer spacing estimation. Air-filled tubes suspended in water, steel balls and plastic tubes buried in the sediment are the multiple scatterers. The cepstrum and the spectral autocorrelation (SAC) methods were used to estimate the scatterer spacing from the backscattered signals. It was found that the SAC method could be improved by employing singular value decomposition (SVD) to extract the effective rank for the spectral components. Unlike the conventional method of estimating the density of scatterers within the insonified volume of water, this type of estimation method would provide better understanding of the spatial distribution of scatterers in the ocean.

An efficient method of spatial cues and compensation method of spectrums on multichannel spatial audio coding (멀티채널 Spatial Audio Coding에서의 효율적인 Spatial Cues 사용과 그에 따른 Spectrum 보상방법)

  • Lee, Byong-Hwa;Beack, Seung-Kwon;Seo, Jeong-Gil;Han, Min-Soo
    • MALSORI
    • /
    • no.53
    • /
    • pp.157-169
    • /
    • 2005
  • This paper proposes an efficiently representing method of spatial cues on multichannel spatial audio coding. The Binaural Cue Coding (BCC) method introduced recently represents multichannel audio signals by means of Inter Channel Level Difference (ICLD) or Source Index (SI). We tried to express more efficiently ICLD and SI information based on Inter Channel Correlation in this paper. We adopt different spatial cues according to ICC and propose a compensation method of empty spectrums created by using SI. We performed a MOS test and measuring spectral distortion. The results show that the proposed method can reduce the bitrate of side information without large degradation of the audio quality.

  • PDF

Simulation of nonstationary wind in one-spatial dimension with time-varying coherence by wavenumber-frequency spectrum and application to transmission line

  • Yang, Xiongjun;Lei, Ying;Liu, Lijun;Huang, Jinshan
    • Structural Engineering and Mechanics
    • /
    • v.75 no.4
    • /
    • pp.425-434
    • /
    • 2020
  • Practical non-synoptic fluctuating wind often exhibits nonstationary features and should be modeled as nonstationary random processes. Generally, the coherence function of the fluctuating wind field has time-varying characteristics. Some studies have shown that there is a big difference between the fluctuating wind field of the coherent function model with and without time variability. Therefore, it is of significance to simulate nonstationary fluctuating wind field with time-varying coherent function. However, current studies on the numerical simulation of nonstationary fluctuating wind field with time-varying coherence are very limited, and the proposed approaches are usually based on the traditional spectral representation method with low simulation efficiency. Especially, for the simulation of multi-variable wind field of large span structures such as transmission tower-line, not only the simulation is inefficient but also the matrix decomposition may have singularity problem. In this paper, it is proposed to conduct the numerical simulation of nonstationary fluctuating wind field in one-spatial dimension with time-varying coherence based on the wavenumber-frequency spectrum. The simulated multivariable nonstationary wind field with time-varying coherence is transformed into one-dimensional nonstationary random waves in the simulated spatial domain, and the simulation by wavenumber frequency spectrum is derived. So, the proposed simulation method can avoid the complicated Cholesky decomposition. Then, the proper orthogonal decomposition is employed to decompose the time-space dependent evolutionary power spectral density and the Fourier transform of time-varying coherent function, simultaneously, so that the two-dimensional Fast Fourier transform can be applied to further improve the simulation efficiency. Finally, the proposed method is applied to simulate the longitudinal nonstationary fluctuating wind velocity field along the transmission line to illustrate its performances.

Advanced Energy Detector with Correlated Multiple Antennas

  • Kim, Sungtae;Lim, Sungmook
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.12
    • /
    • pp.4600-4616
    • /
    • 2021
  • In cognitive radio networks where unlicensed secondary users opportunistically access to licensed spectrum unused by licensed primary users, spectrum sensing is one of the key issues in order to effectively use the frequency resource. For enhancing the sensing performance in energy detection-based spectrum sensing, spatial diversity based on multiple antennas is utilized. However, the sensing performance can be degraded when antennas are spatially correlated, resulting in inducing the harmful interference to primary users. To overcome this problem, in this paper, an advanced energy detector is proposed. In the proposed sensing method, a weight matrix based on the eigenvalues of the spatial channels without any prior information on the primary signals is defined and utilized. In numerical simulations, it is shown that the proposed detector outperforms the conventional detector with regard to false-alarm and detection probabilities when antenna are spatially correlated.

On the Improvement of Bearing Estimation Algorithm Using Automatic Tracking Window (자동 추적 윈도우를 이용한 방위각 추정 알고리즘에 개선에 관하여)

  • 윤병우;신윤기
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.12
    • /
    • pp.1800-1809
    • /
    • 1990
  • This paper proposed a preprocessing algorithm which is named Automatic Tracking Window (ATW), which eliminates the effects of noises at spatial signals and spurious peaks at high-resolution algorithm in bearing estimation algorithm. This method estimates spatial spectrum by periodogram algorisdthm and hihg-resolution algorithm after preprocessing of spatial signal by automatically tracked window.

  • PDF

Analysis of the Sound Source Field Using Spatial Transformation of the Sound Pressure in a Near-field (근거리 음압의 공간 변환에 의한 음원의 음장 분포 해석)

  • 김원호;윤종락
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.8
    • /
    • pp.660-669
    • /
    • 2003
  • This paper describes a theory to calculate sound source field from the spatial transform of sound field and the measured cross-power spectrum of sound pressure over a hologram plane close to a sound source, Calculating method is proposed to solve sound pressures from cross-power spectrums over a hologram plane, For this, Taylor series for the nonlinear equations is expanded, and it is calculated using Newton-Raphon method, Also, a wave number filter is used to reduce errors that is occurred on the backward propagation, and is performed numerical simulation of the circular piston sound source with infinite baffle in water to verify the proposed theory.

A Study on Direction Finding Technique for Array with Faulty Elements (결함소자를 갖는 어레이를 위한 방향 탐지 기법에 관한 연구)

  • Kim, Ki-Man;Youn, Dae-Hee;Cha, Il-Whan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.4
    • /
    • pp.71-75
    • /
    • 1997
  • In this paper, some problems that occur from faulty elements in a direction finding system composed of the linear array are studied and the method which improves the performance is proposed. The fault element means the sensor that has no output or highly reduced gain than other normal sensors. In the case of the presence of faulty elements, the performance of the conventional the spatial spectrum subject to a constraint. The corrected spatial spectrum is obtained by this vector. The computer simulations have been performed to study the performance of the proposed method. We have compared the proposed method with the subaperture processing method of one of the previous works.

  • PDF

Codebook-Based Precoding for SDMA-OFDMA with Spectrum Sharing

  • Jo, Han-Shin
    • ETRI Journal
    • /
    • v.33 no.6
    • /
    • pp.831-840
    • /
    • 2011
  • This paper focuses on codebook-based precoding for space-division multiple access/orthogonal frequency-division multiple access (SDMA-OFDMA) systems aiming to guarantee high throughput for their users as well as to mitigate interference to fixed satellite service (FSS). A systematic design of SDMA codebook for subband-based OFDMA is proposed, which forms multiple orthogonal beams with common spatial null in the direction of a victim FSS earth station (ES). The design enables both transmitter and receiver to independently construct identical codebook by sharing only on the direction angle of an FSS ES, which takes fewer overhead bits than Gram-Schmidt process, a general method satisfying our design criterion. A system-level throughput evaluation shows that the proposed precoding provides superior performance over existing spectrum sharing method, that is, subband deactivation. The spectrum sharing analysis shows that the proposed precoding, even with an estimation error of the direction angles of an FSS ES, causes lower interference than existing precoding, knockdown precoding.

A Video Watermarking Based on Wavelet Transform Using Spread Spectrum Technique (대역확산방법을 이용한 웨이블릿 기반의 비디오 워터마킹)

  • Kim, Seung-Jin;Kim, Tae-Su;Lee, Kuhn-Il
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.5 s.305
    • /
    • pp.11-18
    • /
    • 2005
  • In this paper, we proposed a video watermarking algerian based on wavelet transform using statistical characteristic of video according to the energy distribution and the spread spectrum technique. In the proposed method, the original video is splitted by spatial difference metric and classified into the motion region and the motionless region according to the motion degree. The motion region is decomposed into 3-levels using 3D DWT and the motionless region is decomposed into 2-levels using 2D DWT The baseband of the wavelet-decomposed image is not utilized because of the image quality. So that the standard deviation of the highest subband coefficients except for the baseband is used to determine the threshold. Binary video watermarks preprocessed by the random permutation and the spread spectrum technique are embedded into selected coefficients. In computer experiments, the proposed algorithm was found to be more invisible and robust than the conventional algorithms.