• Title/Summary/Keyword: spatial scheme

Search Result 983, Processing Time 0.031 seconds

Spatial Query Processing Based on Minimum Bounding in Wireless Sensor Networks

  • Yang, Sun-Ok;Kim, Sung-Suk
    • Journal of Information Processing Systems
    • /
    • v.5 no.4
    • /
    • pp.229-236
    • /
    • 2009
  • Sensors are deployed to gather physical, environmental data in sensor networks. Depending on scenarios, it is often assumed that it is difficult for batteries to be recharged or exchanged in sensors. Thus, sensors should be able to process users' queries in an energy-efficient manner. This paper proposes a spatial query processing scheme- Minimum Bounding Area Based Scheme. This scheme has a purpose to decrease the number of outgoing messages during query processing. To do that, each sensor has to maintain some partial information locally about the locations of descendent nodes. In the initial setup phase, the routing path is established. Each child node delivers to its parent node the location information including itself and all of its descendent nodes. A parent node has to maintain several minimum bounding boxes per child node. This scheme can reduce unnecessary message propagations for query processing. Finally, the experimental results show the effectiveness of the proposed scheme.

Key Phase Mask Updating Scheme with Spatial Light Modulator for Secure Double Random Phase Encryption

  • Kwon, Seok-Chul;Lee, In-Ho
    • Journal of information and communication convergence engineering
    • /
    • v.13 no.4
    • /
    • pp.280-285
    • /
    • 2015
  • Double random phase encryption (DRPE) is one of the well-known optical encryption techniques, and many techniques with DRPE have been developed for information security. However, most of these techniques may not solve the fundamental security problem caused by using fixed phase masks for DRPE. Therefore, in this paper, we propose a key phase mask updating scheme for DRPE to improve its security, where a spatial light modulator (SLM) is used to implement key phase mask updating. In the proposed scheme, updated key data are obtained by using previous image data and the first phase mask used in encryption. The SLM with the updated key is used as the second phase mask for encryption. We provide a detailed description of the method of encryption and decryption for a DRPE system using the proposed key updating scheme, and simulation results are also shown to verify that the proposed key updating scheme can enhance the security of the original DRPE.

A Scalable Recovery Tree Construction Scheme Considering Spatial Locality of Packet Loss

  • Baek, Jin-Suk;Paris, Jehan-Francois
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.2 no.2
    • /
    • pp.82-102
    • /
    • 2008
  • Packet losses tend to occur during short error bursts separated by long periods of relatively error-free transmission. There is also a significant spatial correlation in loss among the receiver nodes in a multicast session. To recover packet transmission errors at the transport layer, tree-based protocols construct a logical tree for error recovery before data transmission is started. The current tree construction scheme does not scale well because it overloads the sender node. We propose a scalable recovery tree construction scheme considering these properties. Unlike the existing tree construction schemes, our scheme distributes some tasks normally handled by the sender node to specific nodes acting as repair node distributors. It also allows receiver nodes to adaptively re-select their repair node when they experience unacceptable error recovery delay. Simulation results show that our scheme constructs the logical tree with reduced message and time overhead. Our analysis also indicates that it provides fast error recovery, since it can reduce the number of additional retransmissions from its upstream repair nodes or sender node.

A Selectivity Estimation Scheme for Spatial Topological Predicate Using Multi-Dimensional Histogram (다차원 히스토그램을 이용한 공간 위상 술어의 선택도 추정 기법)

  • Kim, Hong-Yeon;Bae, Hae-Yeong
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.4
    • /
    • pp.841-850
    • /
    • 1999
  • Many commercial database systems maintain histograms to summarize the contents of relations, permit efficient estimation of query result sizes, and access plan costs. In spatial database systems, most query predicates consist of topological relationship between spatial objects, and ti is ver important to estimate the selectivity of those predicates for spatial query optimizer. In this paper, we propose a selectivity estimation scheme for spatial topological predicates based on the multi-dimensional histogram and the transformation scheme. Proposed scheme applies two partition strategies on transformed object space to generate spatial histogram, and estimates the selectivity of topological predicates based on the topological characteristic of transformed space. Proposed scheme provides a way for estimating the selectivity without too much memory space usage and additional I/Os in spatial query optimizer.

  • PDF

Generalized Quadrature Spatial Modulation Scheme Using Antenna Grouping

  • Castillo-Soria, Francisco Ruben;Cortez-Gonzalez, Joaquin;Ramirez-Gutierrez, Raymundo;Maciel-Barboza, Fermin Marcelo;Soriano-Equigua, Leonel
    • ETRI Journal
    • /
    • v.39 no.5
    • /
    • pp.707-717
    • /
    • 2017
  • This paper presents a novel generalized quadrature spatial modulation (GQSM) transmission scheme using antenna grouping. The proposed GQSM scheme combines QSM and conventional spatial multiplexing (SMux) techniques in order to improve the spectral efficiency (SE) of the system. Analytical and simulation results show that the proposed transmission scheme has minimal losses in terms of the average bit error probability along with the advantage of an increased SE compared with previous SM and QSM schemes. For the case studies, this advantage represents a reduction of up to 81% in terms of the number of required transmit antennas compared with QSM. In addition, a detection architecture based on the ordered successive interference cancellation scheme and the QR decomposition is presented. The proposed QRD-M adaptive algorithm showed a near-maximum-likelihood performance with a complexity reduction of approximately 90%.

Joint Spatial-Temporal Quality Improvement Scheme for H.264 Low Bit Rate Video Coding via Adaptive Frameskip

  • Cui, Ziguan;Gan, Zongliang;Zhu, Xiuchang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.1
    • /
    • pp.426-445
    • /
    • 2012
  • Conventional rate control (RC) schemes for H.264 video coding usually regulate output bit rate to match channel bandwidth by adjusting quantization parameter (QP) at fixed full frame rate, and the passive frame skipping to avoid buffer overflow usually occurs when scene changes or high motions exist in video sequences especially at low bit rate, which degrades spatial-temporal quality and causes jerky effect. In this paper, an active content adaptive frame skipping scheme is proposed instead of passive methods, which skips subjectively trivial frames by structural similarity (SSIM) measurement between the original frame and the interpolated frame via motion vector (MV) copy scheme. The saved bits from skipped frames are allocated to coded key ones to enhance their spatial quality, and the skipped frames are well recovered based on MV copy scheme from adjacent key ones at the decoder side to maintain constant frame rate. Experimental results show that the proposed active SSIM-based frameskip scheme acquires better and more consistent spatial-temporal quality both in objective (PSNR) and subjective (SSIM) sense with low complexity compared to classic fixed frame rate control method JVT-G012 and prior objective metric based frameskip method.

Qualitative Representation of Spatial Configuration of Mechanisms and Spatial Behavior Reasoning Using Sign Algebra (메커니즘 공간 배치의 정성적 표현과 부호 대수를 이용한 공간 거동 추론)

  • 한영현;이건우
    • Korean Journal of Computational Design and Engineering
    • /
    • v.5 no.4
    • /
    • pp.380-392
    • /
    • 2000
  • This paper proposes a qualitative reasoning approach for the spatial configuration of mechanisms that could be applied in the early phase of the conceptual design. The spatial configuration problem addressed in this paper involves the relative direction and position between the input and output motion, and the orientation of the constituent primitive mechanisms of a mechanism. The knowledge of spatial configuration of a primitive mechanism is represented in a matrix form called spatial configuration matrix. This matrix provides a compact and convenient representation scheme for the spatial knowledge, and facilitates the manipulation of the relevant spatial knowledge. Using this spatial knowledge of the constituent primitive mechanisms, the overall configuration of a mechanism is described and identified by a spatial configuration state matrix. This matrix is obtained by using a qualitative reasoning method based on sign algebra and is used to represent the qualitative behavior of the mechanism. The matrix-based representation scheme allows handling the involved spatial knowledge simultaneously and the proposed reasoning method enables the designer to predict the spatial behavior of a mechanism without knowing specific dimension of the components of the mechanism.

  • PDF

Data Sorting-based Adaptive Spatial Compression in Wireless Sensor Networks

  • Chen, Siguang;Liu, Jincheng;Wang, Kun;Sun, Zhixin;Zhao, Xuejian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.8
    • /
    • pp.3641-3655
    • /
    • 2016
  • Wireless sensor networks (WSNs) provide a promising approach to monitor the physical environments, to prolong the network lifetime by exploiting the mutual correlation among sensor readings has become a research focus. In this paper, we design a hierarchical network framework which guarantees layered-compression. Meanwhile, a data sorting-based adaptive spatial compression scheme (DS-ASCS) is proposed to explore the spatial correlation among signals. The proposed scheme reduces the amount of data transmissions and alleviates the network congestion. It also obtains high compression performance by sorting original sensor readings and selectively discarding the small coefficients in transformed matrix. Moreover, the compression ratio of this scheme varies according to the correlation among signals and the value of adaptive threshold, so the proposed scheme is adaptive to various deploying environments. Finally, the simulation results show that the energy of sorted data is more concentrated than the unsorted data, and the proposed scheme achieves higher reconstruction precision and compression ratio as compared with other spatial compression schemes.

A New Efficient Group-wise Spatial Multiplexing Design for Closed-Loop MIMO Systems (폐루프 다중입출력 시스템을 위한 효율적인 그룹별 공간 다중화 기법 설계)

  • Moon, Sung-Myun;Lee, Heun-Chul;Kim, Young-Tae;Lee, In-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.4A
    • /
    • pp.322-331
    • /
    • 2010
  • This paper introduces a new efficient design scheme for spatial multiplexing (SM) systems over closed loop multiple-input multiple-output (MIMO) wireless channels. Extending the orthogonalized spatial multiplexing (OSM) scheme which was developed recently for transmitting two data streams, we propose a new SM scheme where a larger number of data streams can be supported. To achieve this goal, we partition the data streams into several subblocks and execute the block-diagonalization process at the receiver. The proposed scheme still guarantees single-symbol maximum likelihood (ML) detection with small feedback information. Simulation results verify that the proposed scheme achieves a huge performance gain at a bit error rate (BER) of $10^{-4}$ over conventional closed-loop schemes based on minimum mean-square error (MSE) or bit error rate (BER) criterion. We also show that an additional 2.5dB gain can be obtained by optimizing the group selection with extra feedback information.

A Novel Transmission Scheme with Spatial Modulation for Coded OFDM Systems (채널 부호화된 OFDM 시스템을 위한 공간 변조를 이용한 새로운 전송 기법)

  • Hwang, Soon-Up;Kim, Young-Ki;Jeon, Sung-Ho;Kang, Woo-Seok;Seo, Jong-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.7A
    • /
    • pp.515-522
    • /
    • 2009
  • In this paper, a novel transmission scheme with spatial modulation is proposed for coded orthogonal frequency division multiplexing (OFDM). The multiple-input multiple-output (MIMO) technique, so-called spatial modulation (SM), divides input data into antenna index and data signals, transmitting data signals through the specific antenna chosen by the antenna index. In order to retrieve data stream at the receiver, SM needs to detect the antenna index which means that data signals are transmitted via a certain antenna. For this reason, it should be guaranteed that channel matrix is orthogonal. For the real environment, a MIMO channel has difficulty in maintaining orthogonality due to spatial correlation. Moreover, the receiver of the conventional SM is operated by hard decision, so that this scheme has a limit to be adopted for practical systems. Therefore, soft-output demappers for the conventional and proposed schemes are derived to detect antenna index and data stream by soft decision, and a novel transmission scheme combined with spatial modulation is proposed to improve the bit error rate (BER) performance of the conventional scheme.