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Abstract 
 

Wireless sensor networks (WSNs) provide a promising approach to monitor the physical 
environments, to prolong the network lifetime by exploiting the mutual correlation among 
sensor readings has become a research focus. In this paper, we design a hierarchical network 
framework which guarantees layered-compression. Meanwhile, a data sorting-based adaptive 
spatial compression scheme (DS-ASCS) is proposed to explore the spatial correlation among 
signals. The proposed scheme reduces the amount of data transmissions and alleviates the 
network congestion. It also obtains high compression performance by sorting original sensor 
readings and selectively discarding the small coefficients in transformed matrix. Moreover, 
the compression ratio of this scheme varies according to the correlation among signals and the 
value of adaptive threshold, so the proposed scheme is adaptive to various deploying 
environments. Finally, the simulation results show that the energy of sorted data is more 
concentrated than the unsorted data, and the proposed scheme achieves higher reconstruction 
precision and compression ratio as compared with other spatial compression schemes. 
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1. Introduction 

Wireless sensor networks (WSNs) have become increasingly important because of its ability 
to monitor and manage physical or environmental information for various intelligent services 
[1]. WSNs have been applied in many fields, such as the military, industry, environmental 
monitoring and healthcare [2-3].  

 However, the existent challenges of practical operation are due to the small batteries of 
sensor nodes, and it is infeasible to recharge them or deployed new nodes in many scenarios. 
In this case, how to prolong the lifetime of sensors has become a critical issue [4]. As we know, 
WSN has following two notable properties. Firstly, the overhead of messages transmission 
occupies most of energy consumption. When overwhelming messages transmitted to sink 
node, sink node will suffer heavy burden of data processing. What’s worse, the relay nodes 
near sink node will consume their energy faster. When these nodes exhausted, WSN will be 
broken [5]. Secondly, sensing data reported from sensor nodes often exhibit a certain degree of 
correlation. It’s feasible to compress signals by utilizing some certain compression schemes. 
Exploiting spatial correlation among signals not only reduces the number of transmissions, but 
also decreases the energy consumption of the entire WSN. Thus this topic becomes a research 
focus [6]. With these observations, we can compress the message transmitted in the WSN. 
With the decrease of transmitted signals, the network congestion alleviates greatly. 

Chen et al. [7] developed a spatial compression scheme by applying compressed sensing 
(CS) to compress spatial correlated data. The CS requires the original signals have sparse 
representation in some particular bases or dictionaries. This property limits the application 
areas of compressed sensing. In [8], Kong et al. proposed a novel CS-based approach to 
develop a space time improved CS algorithm to enhance the reconstruction accuracy. The 
feature of this approach is that the signals are transformed into a long vector. Although the 
correlations are exploited fully, the computational complexity of reconstruction process is 
high. The works [9-10] studied Huffman coding and Lempel-Ziv-Welch (LZW) scheme to 
achieve textual data compression. These two compression schemes provide lossless text 
compression. Nevertheless, they cannot be applied in the data compression of WSN directly. 
Because the textual data are composed of finite set of alphabets, however, the reports of 
sensing nodes are continuous values.  

The work [11] proposed a data compression scheme for WSNs by applying wavelet 
transform. The work [12] investigated image signal compression scheme for WSNs by 
applying discrete cosine transform (DCT), the idea of injecting image compression method to 
WSNs is encouraging. As we know, DCT and wavelet transform are widely used in image 
compression and the sensing data in WSN. In work [13], an algorithm called RIDA presented 
a novel paradigm to compress data by using logical mapping in WSNs. Each sensor only sends 
the large transformed coefficients to the relay nodes. Wang et al. [4] constructed a 
multi-compression scheme to achieve layered-compression, where reduced zigzag scan (RZS) 
is the core of proposed scheme. This work injected the DCT method to signal compression and 
developed a novel spatial compression scheme. The compression scheme is simple, but the 
signal recovery accuracy is low, especially in some extreme cases. Meanwhile, it assumes the 
correlation among signals are strong, in this case, most of the coefficients in transformed 
matrix are rather small. The rigid compression method wastes the sensors’ energy in the 
WSNs. Nguyen et al. [14] proposed an improved RZS to compress spatial signals. Compared 
with the former scheme, the improved RZS sorts the original data in ascending or descending 
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order in relay nodes. After taking sorting step, a larger proportion of original signal energy is 
focused on the coefficients in the upper-left side. However, the improved compression scheme 
still overlooks the disadvantages of this kind of rigid compression scheme. The drawback is 
that it discards some last coefficients instead of selectively deletes the small coefficients. In 
addressing the problem, recently, a compression scheme [15] selectively discards the small 
coefficients to compress the data which is proposed. But the coefficients in this scheme are not 
the smallest. 

Motivated by the existing problems and the novel idea of exploring spatial correlation in 
prior literatures, we combine the advantages of the compression schemes above, and propose a 
data sorting-based adaptive spatial compression scheme (DS-ASCS) in this paper. 

The first contribution is that our work designs a layered network model. The proper design 
of network model guarantees the effective implementation of layered compression scheme. 

Secondly, we investigate the data sorting of the received signals in cluster head node which 
can explore the correlation of signals better, and that means the DCT coefficients of sorted 
data become more concentrated, i.e., the signal energy will focus on the few significant 
elements. It's useful for deleting small coefficients in compression process. 

Thirdly, based on the previous two contributions we propose a data sorting-based adaptive 
spatial compression scheme, which includes zigzag scan method and adaptive spatial 
compression algorithm (ASCA), and can explore the spatial correlation among signals deeply 
and completely. The proposed scheme reduces the amount of data transmissions and obtains 
high compression and reconstruction performance by sorting original sensor readings and 
selectively discarding the small coefficients in transformed matrix. Meanwhile, the proposed 
scheme is adaptive to various deploying environments. 

Finally, the simulation results confirm that the DS-ASCS outperforms the other similar 
spatial compression schemes. In contrast with those compression schemes, the proposed 
scheme possesses lower reconstruction error at the same compression ratio and has more 
stable reconstruction property.  

The rest of this paper is organized as follows. Section 2 introduces the background 
knowledge of DCT. In Section 3, the layered-network model is presented. In Section 4, we 
present the DS-ASCS in detail. In Section 5, compared with previous schemes, the related 
simulations are given to certify the sorted data is more focused than unsorted, and examine the 
advantages of proposed scheme. Finally, conclusions are drawn in Section 6.  

2. Background of DCT 
As we know, discrete cosine transform (DCT) plays a vital role in video compression due to its 
near-optical decorrelation efficiency [10]. DCT is an orthogonal transformation encoding 
method, and it’s used to remove the spatial redundancy of image and extract significant values 
of the image. Transformation coding transforms the image intensity matrix (time-domain 
signal) into coefficient space (frequency domain signal) [12]. The formula of two-dimensional 
(2D) DCT used in this paper is written as follows: 
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where ( ) 2c i =  if i =1 and ( ) 1c i = otherwise. In signal compression of WSN, on the one hand, 
DCT maps the signal in spatial domain to coefficient domain to decrease the direct relations 
among DCT coefficients. On the other hand, compared with unsorted data, the coefficients of 
sorted data are more concentrated on the upper-left part of the transformed matrix [15]. This 
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property provides us the possibility to deeply explore the correlation among sensors readings.   
For transformed data matrix, we utilize inverse 2D-DCT to reconstruct original data matrix. 

The reconstruction process is lossless. The formula of inverse DCT is written as follows: 
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The energy of strongly correlated spatial signals reflects in frequency domain always 
concentrate in some particular areas, i.e., the distribution of coefficient matrix possesses some 
rules. In particular, DCT compacts those important coefficients in the upper-left part of 
transformed matrix, while leaving other insignificant values in the opposite side. In this way, 
we can compress the signal matrix according to these laws. After the image transformed by 
DCT, the correlation among DCT coefficients becomes smaller. And most of the energy of 
image concentrates in some small number of coefficients located in the upper-left part [16].  

3. Network Model 
This section illuminates our hierarchical network framework. The planar graph of proposed 
network framework is shown in Fig. 1. 

Sensor node

Cluster head node 

Sink node

l

l

Relay node

 
Fig. 1. Planar graph of proposed WSN framework 

 
In our proposed network scenario, we construct a multi-layer WSN, where N nodes are 

uniformly and randomly deployed in a unit area. The neighboring nodes observe the same 
phenomenon, so the sensing data of neighboring sensors are always spatially correlated.  

We recursively divide the observation area intoα clusters. And each cluster contains l l×  
grids, where l is a small integer. The ideal situation is one grid contains one sensing node. In 
this case, the relay node takes the sensing reports from sensing node as the value of grid. 
However, due to the randomness of deploying sensor nodes, the number of sensor nodes in 
each grid is uncertain. In the observation area, a grid may possibly contain zero node. To deal 
with this problem, once the upper layer relay nodes detect the case that one grid doesn’t report 
sensing data, they take the average value of the corresponding adjacent grids. On the other 
hand, if there are more than one sensing node in one grid, the relay node takes the average 
value of their sensing reports as the grid’s value.  
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In this way, we establish a relation between DCT and spatial compression scheme in WSN. 
We arrange all kinds of nodes into three layers in Fig. 2, where a node in layer i+1 

contains clusters in layer-i. With the layered structure network, we achieve the goal of 
layered-compression. We select a node as cluster head node, and the rest of nodes in cluster are 
used to report the sensing readings to head node.  The head nodes in layer-1 collect and 
compress sensing data from the corresponding grids. In layer-2, we define the node as 
relay node which is used to further collect and compress the signals from the 
corresponding clusters in its lower layer. The data passed through each layer will be spatially 
compressed by the DS-ASCS. Finally, the sink node in layer-3 receives the compressed 
signals, and reconstructs the orginal signals. 

 
Fig. 2. System architecture of proposed WSN framework 

4. Data Sorting-based Adaptive Spatial Compression Scheme 
The existent works proposed to exploit spatial correlation in WSN can be classified into 
several categories, where one of the classical compression schemes is proposed in work [4]. 

In [4], Wang et al. proposed a RZS compression method, the processing node applies DCT 
method on original data matrix, the last several coefficients of transformed matrix are forced 
to abandoned. Although RZS scheme achieves the goal of data layered-compression and 
provides us a novel data compression method, the RZS scheme is rigid and the reconstruction 
precision is low. In [14], Nguyen et al. proposed an improved RZS, however, the improved 
scheme still has the inherent drawback.  

Based on the classical idea of spatial compression and the existing problems in previous 
works, we propose a DS-ASCS in this section. The sorted data reduces the correlation of 
coefficients, and the proper deletion of small coefficients guarantees the signal recovery with 
high precision.  

According to the layer number, the steps of DS-ASCS are given as follows: layer-1 
compression, layer-i (i>1) compression and decompression at the sink. In order to facilitate the 
understanding, some concepts need to be defined and the relation between them will be 
explained. The compression ratio  is defined as the reduction in size relative to the 
uncompressed size through each layer. The compression ratio is defined as: 

.                                                    (3) 
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The compression ratioλ in this section is hard to set, because the number of coefficients 
below the thresholdδ is based on the correlation among sensors readings. In the first layer 
compression, the length of compressed vector depends on the threshold δ. In a word, 
compression ratioλ varies along with the thresholdδ . Meanwhile, the correlation of grids’ 
values in different clusters is dubious. Due to this reason, the threshold is an empirical value.  

1) Layer-1 Compression Process: In this subsection, lay-1 compression is presented. The 
cluster head node in cluster k collects and sorts 2D signal in a time slot t is represented 
as l l

kM R ×∈ , where k denotes the index of cluster. The (i, j)-th entry of kM is denoted as ( , )s i j , 
which corresponds to data sample of grid ( , )i j , and ( )s l l

kM R ×∈  denotes the sorted matrix 
of l l

kM R ×∈ . The specific mapping relations between kM and ( )s
kM is recorded in 2(1, )O Z l∈ , the 

format of O is given as follows: 
[ ( (1,1)), ( (1, 2)),..., ( ( , ))]k k kO offset M offset M offset M l l=                         (4) 

which records the offset of the original elements. 
The cluster head node generates a new matrix ( )T l l

kM R ×∈ by implementing 2D-DCT 
on ( )s l l

kM R ×∈ . The elements of ( )T
kM are denoted as ( , )t i j (1 ,i j l≤ ≤ ). Based on the property of 

DCT, a smaller ( )( )s
kMµ  will lead to a sparser transformed matrix ( )T

kM . The coherence of 
matrix ( )s

kM is defined as  

( )

1
2 2

,
( ) max

i js
k i j l

i j
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M

a a
m

≤ < ≤
=                                                  (5) 

where ia and ja denotes the two different columns in ( )s
kM .  

After the sorted original data matrix ( )s
kM transformed by 2D-DCT, the distribution of 

elements in transformed matrix ( )T
kM depends on the correlation among sorted signals. The 

more correlated among sorted spatial signals, the more energy gathered in upper left corner.  
Considering the signals of one cluster are highly correlated. Especially after the sorting 

process, the signal correlation is improved. Sensor nodes in different regions observe different 
physical phenomena, the reports of different nodes belong to different observed regions may 
be variable from each other. In this case, it’s highly possible that the values of different 
regions’ transformed matrix ( )T

kM are quite different. This property requires us to set different 
thresholds according to the correlation among the signals in different observed regions.  

After the sorted original data matrix transformed by 2D-DCT, the zigzag scan [17] will be 
implemented on the transformed matrix. Zigzag scan method and adaptive spatial 
compression algorithm (ASCA) are two components of DS-ASCS. Zigzag scan is applied to 
transform the transformed matrix into a one-dimension vector 21 l

kv R ×∈ , and ASCA is used to 
compress data. The procedure of zigzag scan can be interpreted in mathematical language. 
Assume there is a matrix, whose size is N N× . The symbols , (1 , )i j i j N≤ ≤  represent the 
number of row and column of the matrix, respectively. And ( , )I i j is the index of original 
elements. The formula of zigzag scan is shown as follows: 
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where ( )t N abs i j= − − , and p is the index of position in transformed vector.  
The path of zigzag scan is shown in Fig. 3.  

 
Fig. 3. Zigzag scan 

 
The summary of zigzag scan is given as follows: zigzag scan method begins at the 

upper-left corner of ( )T
kM and sequentially scans the diagonals of ( )T

kM . The zigzag scan 
method stops when it scans the last coefficient of ( )T

kM [18]. The result of zigzag scan is shown 
in Fig. 4.  

 

1 2 6 11 15 20 24 25...
1 2 3 4 ... 22 23 24 25

 
Fig. 4. The result of transformed vector vk 

 
Algorithm. 1 Adaptive spatial compression algorithm 

                                       Input: Vector vk, threshold δ 
                                       Output: Compressed vector vk

(c) 
                                       begin 

                                       Initialize threshold δ=10-3 
                                       for i= 2l  to 2 
                                             if ( )kv i <= δ 
                                                  I. record i 
                                                  II. discard vk(i) 
                                             end 
                                       end 

                                       end 
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Then, we assume that each element in transformed matrix is denoted as ( )
,

T
i j kt M∈ , where 

1 ,i j l≤ ≤ . Instead of using ( , )i j denotes each element, we apply a one-dimension vector to 

represent the index of each cluster. Then we compress the transformed vector 21 l
kv R ×∈ by 

applying ASCA. The scan procedure is started from the end of this vector. Because the small 
coefficients are mainly distributed in the end of the vector. In this case, a lot of time for 
scanning is saved. Finally, the coefficients less than δ are abandoned, and we get the 
compressed vector and the indices of discarded elements.  

After getting the compressed vector 2( ) 1 ( )c l
kv R l× ⋅∈ , we define the format of transmitted 

packet in k-th cluster head node denoted by kr . kr has three independent components, they are 
given by 

( )(1) [ , ]
(2)
(3)=

c
k k

k k

k

r v t
r r I

r O

 =


= =



                                                         (7) 

where I is a set consists of the indices of discarded coefficients, t is the corresponding time slot, 
and k denotes the index of cluster. The symbol O records the offset of the original elements.  

We transmit kr to the corresponding relay node of lay-2. According to the property of DCT, 
our compression scheme keeps most significant values of the matrix ( )T

kM . With the value of 
compression ratioλ increases, the precision of reconstructed signal decreases.  

2) Layer-i ( 2i ≥ ) Compression Process: Relay nodes in layer-i further compress the data 
from the correspondingα clusters of its lower layer. Based on the received signal, we set a 
lager experience-based threshold 'δ at relay nodes in higher layer.  

In layer-i compression, we further reduce the length of vector ( )c
kv  (passed from the layer 

i-1) by discarding the coefficients of ( )c
kv . Recall that the vector ( )c

kv doesn’t arrange the 
coefficients in a certain order. Therefore, we can reduce the size of sensing data with a larger 
threshold 'δ in layer-i ( 2i ≥ ) and keep the significant coefficients of transmitted data.  

3) Decompression Process: In order to reduce the computation overhead of sensor nodes, 
the decompression procedure is performed at sink node. The sink node obtains a matrix from 
the relay nodes of lower layer, and the set of compressed signals is 

( ) ( ) ( )
1 2( , ,..., )c c cv v v vα=                                                      (8) 

where ( ) ( ) ( ) ( )[ (1,1), (1, 2), (2,1),...]c T T T
k k k kv M M M= denotes the reserved coefficients. The specific 

indices of coefficients are unknown to us. For each lay-1 cluster k, the sink node recovers the 
corresponding vector ( )R

kv to a two-dimensional matrix ( )R
kM . According to the location 

information in received package I, sink node fills the discarded coefficients of ( )c
kv with zeros 

in the first step of reconstruction process, where I(i) is the index of discarded coefficients. 
Then we use formula (2) to recover ( )R

kv and obtain reconstructed matrix ( )
,( )R

k i j l lM r ×= . The final 

reconstruction operation is to rearrange the order of ( )R
kM into

~
( )

,( )r
i jk l lM s ×= based on the 

location information recorded in O. 
Note that since the matrix ( )T

kM is incomplete, the recovery matrix ( )r
kM may not be 

necessarily equals to the original matrix kM . The compression ratioλ decides both the size of 
compressed sensing reports and the precision of recovery signals, it is a trade-off between 
these two metrics.  
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5. Performance Analysis 
In this section, we evaluate the recovery performance of the proposed scheme with 
compression schemes in [4, 14, 15] via simulations. The algorithm bubble sort [19] is utilized 
to sort the original data. Based on the numerical comparisons, we confirm that the sorted data 
has stronger correlation than unsorted data. The results also show that the proposed scheme 
enhances the signal reconstruction performance.  

5.1 Performance Analysis: Sorted and Unsorted Data 
In this subsection, in order to ensure the reliability and universality, 1×1000 sensing 

readings whose variance is 9 are used in this simulation.  

 
Fig. 5. Unsorted original data 

 
Fig. 6. Sorted data in ascending order 

 
Fig. 5 depicts the original 1×1000 sensing readings whose variance is 9. In Fig. 5 , the 

data is in chaos and disorder. In oreder to increase the relevance of original data, we sort the 
data in ascending order. The sorted data is shown in Fig. 6. From the figures above, we can see 
that the data in Fig. 6 is much smoother than the data in Fig. 5. Figs. 7 and 8 confirm the data 
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in Fig. 6 is more related than the data in Fig. 5 while the DCT is applied on them. 
Figs. 7 and 8 also depict the distribution of DCT coefficients of unsorted and sorted data, 

respectively. The signal energy of them almost focuses in relatively small numbers of 
significant coefficients. In particular, the DCT coefficients of sorted data are more 
concentrated on the few numbered coefficients. 

 
Fig. 7. Transformed unsorted data in DCT 

 
Fig. 8. Transformed sorted data in DCT 

 
In Fig. 9, the judgment threshold is set to be 1. By implementing DCT on the series of 

random data whose variance are {0, 1, 2, …, 10}, it can be seen that, with the increase of 
variance, the number of coefficients of unsorted data below the threshold drops faster. 
Combined with figures above, we can draw a conclusion that the DCT coefficients of sorted 
data is more concentrated. Moreover, regardless of type of data, compared with unsorted data, 
its coefficients always concentrate in a smaller number. In other words, it is feasible to 
strengthen the whole system’s adaptability through sorting the original data. In addition, by 
sorting data, we can explore the spatial correlation more complete and deep. 
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Fig. 9. The contrast between sorted and unsorted data 

5.2 Performance Analysis: Data Recovery 
In this subsection, we provide a certain network to evaluate the recovery performance of 

our compression scheme. In the meantime, we compare the simulation results of recovery 
accuracy with other compression schemes. For simplicity, in the simulation scenario, we 
assume the WSN consisting of 25 sensing nodes, and divide these sensors into only 1 cluster. 
The architecture of WSN is a two layers network.  

The parameters are initialized as follows. We set the system parameters 1α = , 5l = and the 
compression ratio λ varies with the compression threshold δ. The range of compression 
ratioλ in experiment is from 0 to 0.6.  

In the simulation figures, ‘with RZS’ denotes the compression scheme proposed in [4]; 
‘with improved RZS’ denotes the compression scheme proposed in [14]; ‘with ASCS’ denotes 
the adaptive compression scheme proposed in [15]; ‘with DS-ASCS’ denotes the proposed 
compression scheme in this paper. ‘Compression ratio’ is defined as equation (3). Similar with 
[20], in order to measure recovery accuracy, we define recovery error ratio as follows:      

, ,
1 1

l l

i j i j
i j

s sγ
= =

= −∑∑ 

                                                      
(9) 

where jis ,
~ denotes the reconstructed data of each grid, jis , denotes the original data. ‘Recovery 

accuracy’ is defined to be γξ -1= and which is utilized to evaluate the reconstruction 
performance of compression schemes. Due to the small size of constructed WSN, we use 
bubble sort [19] to sort the original data. 

Fig. 10 shows the reconstruction accuracy of above four compression schemes in different 
compression ratios. Observed from the figure, the curves show that the recovery accuracy 
decreases gradually with the increase of compression ratio. Specifically, the ASCS and 
DS-ASCS improve the recovery performance significantly. On the contrary, the recovery of 
RZS and improved RZS is not as expected. Overall, the DS-ASCS outperforms other 
compression schemes significantly in terms of recovery accuracy. For instance, when 
compression ratio 0.6λ = , the recovery accuracy of DS-ASCS is 0.9518, to achieve the same 
reconstruction precision, ASCS and improved RZS have to decrease λ to 0.16, and the 
compression ratio of RZS is nearly reduced to 0. 
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Fig. 10. The recovery accuracy in different compression ratios 

 
Meanwhile, as compared with other schemes, the performance of the DS-ASCS is more 

consistent. When λ varies from 0 to 0.6, the recovery accuracy drops from 1 to 0.9518. This is 
because, on the one hand, we increase the correlation of original data by sorting them, in this 
case, the signal energy is more concentrated on smaller numbered coefficients. On the other 
hand, we selectively discard the coefficients by setting an empirical threshold. The inherent 
drawback of RZS is that it mechanically discards the last several coefficients. This rigid 
compression scheme will discard some important coefficients unintentionally. The 
threshold-based scheme resolves the inherent defect of conventional scheme, and further 
explores the spatial correlation among sensor readings. 

In summary, as the spatial correlation is explored more complete and deep by the 
DS-ASCS, our scheme is more advantageous and stable than the other schemes. Moreover, 
our scheme reduces the number of transmissions and alleviates the congestion of the whole 
network. 

 
Fig. 11. The comparison among recovery curves with four schemes when compression ratio λ =0. 6 

 
Fig. 11 displays the comparison among original signals and reconstructed signals with 

different compression schemes when compression ratio 0.6λ = . The recovery curves show 
that the recovery signal with DS-ASCS is closer. Although other schemes preserve important 
characteristics of sensing reports in different degrees, they lose some important detail of 
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original signals. 
Combining Figs. 10 and 11 we can derive that the performance of our scheme is better than 

the schemes [4], [14] and [15]. 

6. Conclusion 
Based on the spatial correlation of sensor readings, this paper proposed a DS-ASCS to 
improve the recovery performance of compressed data. This scheme could reduce the number 
of transmissions and decrease the reconstruction error. In the meantime, the proposed scheme 
was more adaptive to various deployed environments. Finally, the simulation results further 
confirmed the advantages of the DS-ASCS. However, DS-ASCS still had following 
drawbacks. The deployed environment of our proposed compression scheme was noiseless, 
but most of the real environment was noisy. Meanwhile, the compression threshold was an 
empirical value which means it can be judged by human experience. To deal with the 
drawbacks above, we will deploy the three-layered WSNs in noisy environment to evaluate 
the compression scheme. And more researches on self-adaptive control need to be done in the 
future work. In addition, we will consider introducing the network resource optimization and 
secure commumunication ideas [21-23] into our research scheme. 
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