• Title/Summary/Keyword: spatial query

Search Result 427, Processing Time 0.026 seconds

Extension of Aggregate Functions for Spatiotemporal Data Analysis (데이타 분석을 위한 시공간 집계 함수의 확장)

  • Chi Jeong Hee;Shin Hyun Ho;Kim Sang Ho;Ryu Keun Ho
    • Journal of KIISE:Databases
    • /
    • v.32 no.1
    • /
    • pp.43-55
    • /
    • 2005
  • Spatiotemporal databases support methods of recording and querying for spatiotemporal data to user by offering both spatial management and historical information on various types of objects in the real world. We can answer to the following query in real world: 'What is the average of volume of pesticide sprayed for cach farm land from April to August on 2001, within some query window' Such aggregation queries have both temporal and spatial constraint. However, previous works for aggregation are attached only to temporal aggregation or spatial aggregation. So they have problems that are difficult to apply for spatiotemporal data directly which have both spatial and temporal constraint. Therefore, in this paper, we propose spatiotemporal aggregate functions for analysis of spatiotemporal data which have spatiotemporal characteristic, such as stCOUNT, stSUM, stAVG, stMAX, stMIN. We also show that our proposal resulted in the convenience and improvement of query in application systems, and facility of analysis on spatiotemporal data which the previous temporal or spatial aggregate functions are not able to analyze, by applying to the estate management system. Then, we show the validity of our algorithm performance through the evaluation of spatiotemporal aggregate functions.

SQMR-tree: An Efficient Hybrid Index Structure for Large Spatial Data (SQMR-tree: 대용량 공간 데이타를 위한 효율적인 하이브리드 인덱스 구조)

  • Shin, In-Su;Kim, Joung-Joon;Kang, Hong-Koo;Han, Ki-Joon
    • Spatial Information Research
    • /
    • v.19 no.4
    • /
    • pp.45-54
    • /
    • 2011
  • In this paper, we propose a hybrid index structure, called the SQMR-tree(Spatial Quad MR-tree) that can process spatial data efficiently by combining advantages of the MR-tree and the SQR-tree. The MR-tree is an extended R-tree using a mapping tree to access directly to leaf nodes of the R-tree and the SQR-tree is a combination of the SQ-tree(Spatial Quad-tree) which is an extended Quad-tree to process spatial objects with non-zero area and the R-tree which actually stores spatial objects and are associated with each leaf node of the SQ-tree. The SQMR-tree consists of the SQR-tree as the base structure and the mapping trees associated with each R-tree of the SQR-tree. Therefore, because spatial objects are distributedly inserted into several R-trees and only R-trees intersected with the query area are accessed to process spatial queries like the SQR-tree, the query processing cost of the SQMR-tree can be reduced. Moreover, the search performance of the SQMR-tree is improved by using the mapping trees to access directly to leaf nodes of the R-tree without tree traversal like the MR-tree. Finally, we proved superiority of the SQMR-tree through experiments.

Design and Implementation of Unified Index for Query Processing Past, Current and Future Positions of Moving Objects (이동체의 과거, 현재 및 미래 위치 질의 처리를 위한 통합 색인의 설계 및 구현)

  • Ban, Chae-Hoon;Jeon, Hee-Chul;Ahn, Sung-Woo;Kim, Jin-Deog;Hong, Bong-Hee
    • Journal of Korea Spatial Information System Society
    • /
    • v.7 no.1 s.13
    • /
    • pp.77-89
    • /
    • 2005
  • Recently, application area on the Location Based System(LBS) is increasing because of development of mobile-communication and GPS technique. Previous studies on the index of moving objects are classified as either index for past trajectories or current/future positions. It is necessary to develop a unified index because many applications need to process queries about both past trajectories and current/future positions at the same time. In this paper, the past trajectories of moving objects are represented as line segments and the current and future positions are represented as the function of time. We propose a new index called PCR-tree(Past, Current R-tree) for unification of past, current and future positions. Nodes of the index have bounding boxes that enclose all position data and entries in the nodes are accessed with only one interface. We implement the proposed index and show a feasibility of processing the queries about temporal-spatial domain with the query tool which we develop.

  • PDF

Design and Implementation of a Data Management System for Mobile Spatio-Temporal Query (모바일 시공간 질의을 위한 데이타 관리 시스템의 설계 및 구현)

  • Lee, Ki-Young;Lim, Myung-Jae;Kim, Joung-Joon;Kim, Kyu-Ho;Kim, Jeong-Lae
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.1
    • /
    • pp.109-113
    • /
    • 2011
  • Recently, according to the development of ubiquitous computing, the u-GIS which not only used in u-Transport, u-Care, u-Fun, u-Green, u-Business, u-Government, and u-City but also used to provides various spatial information such as the location of user is being the core technology of the ubiquitous computing environment. In this paper, we implemented an mobile spatio-temporal Query Processing Systems for handling the Spatio-Temporal Data in mobile equipment.The mobile spatio-temporal Query Processing Systems provides the spatio-temporal data type and the spatio-temporal operator that is expanded by the spatial data type and the spatial operator from OepenGIS "Simple Feature Specification for SQL". It supports arithmetic coding compression techniques that is considered with a spatio-temporal data specific character. It also provides the function of data cashing for improving the importation and exportation of the spatio-temporal data between a embedded spatio-temporal DBMS and u-GIS server.

Efficient Data Scheduling considering number of Spatial query of Client in Wireless Broadcast Environments (무선방송환경에서 클라이언트의 공간질의 수를 고려한 효율적인 데이터 스케줄링)

  • Song, Doohee;Park, Kwangjin
    • Journal of Internet Computing and Services
    • /
    • v.15 no.2
    • /
    • pp.33-39
    • /
    • 2014
  • How to transfer spatial data from server to client in wireless broadcasting environment is shown as following: A server arranges data information that client wants and transfers data by one-dimensional array for broadcasting cycle. Client listens data transferred by the server and returns resulted value only to server. Recently number of users using location-based services is increasing alongside number of objects, and data volume is changing into large amount. Large volume of data in wireless broadcasting environment may increase query time of client. Therefore, we propose Client based Data Scheduling (CDS) for efficient data scheduling in wireless broadcasting environment. CDS divides map and then calculates total sum of objects for each grid by considering number of objects and data size within divided grids. It carries out data scheduling by applying hot-cold method considering total data size of objects for each grid and number of client. It's proved that CDS reduces average query processing time for client compared to existing method.

Efficient Execution of Range $Top-\kappa$ Queries using a Hierarchical Max R-Tree (계층 최대 R-트리를 이용한 범위 상위-$\kappa$ 질의의 효율적인 수행)

  • 홍석진;이상준;이석호
    • Journal of KIISE:Databases
    • /
    • v.31 no.2
    • /
    • pp.132-139
    • /
    • 2004
  • A range $Top-\kappa$ query returns top k records in order of a measure attribute within a specified region on multi-dimensional data, and it is a powerful tool for analysis in spatial databases and data warehouse environments. In this paper, we propose an algorithm for answering the query via selective traverse of a Hierarchical Max R-Tree(HMR-tree). It is possible to execute the query by accessing only a small part of the leaf nodes in the query region, and the query performance is nearly constant regardless of the size of the query region. The algorithm manages the priority queue efficiently to reduce cost of handling the queue and the proposed HMR-tree can guarantee the same fan-out as the original R-tree.

A Spatial Hash Strip Join Algorithm for Effective Handling of Skewed Data (편중 데이타의 효율적인 처리를 위한 공간 해쉬 스트립 조인 알고리즘)

  • Shim Young-Bok;Lee Jong-Yun
    • Journal of KIISE:Databases
    • /
    • v.32 no.5
    • /
    • pp.536-546
    • /
    • 2005
  • In this paper, we focus on the filtering step of candidate objects for spatial join operations on the input tables that none of the inputs is indexed. Over the last decade, several spatial Join algorithms for the input tables with index have been extensively studied. Those algorithms show excellent performance over most spatial data, while little research on solving the performance degradation in the presence of skewed data has been attempted. Therefore, we propose a spatial hash strip join(SHSJ) algorithm that can refine the problem of skewed data in the conventional spatial hash Join(SHJ) algorithm. The basic idea is similar to the conventional SHJ algorithm, but the differences are that bucket capacities are not limited while allocating data into buckets and SSSJ algorithm is applied to bucket join operations. Finally, as a result of experiment using Tiger/line data set, the performance of the spatial hash strip join operation was improved over existing SHJ algorithm and SSSJ algorithm.

Efficient Processing of Aggregate Queries in Wireless Sensor Networks (무선 센서 네트워크에서 효율적인 집계 질의 처리)

  • Kim, Joung-Joon;Shin, In-Su;Lee, Ki-Young;Han, Ki-Joon
    • Spatial Information Research
    • /
    • v.19 no.3
    • /
    • pp.95-106
    • /
    • 2011
  • Recently as efficient processing of aggregate queries for fetching desired data from sensors has been recognized as a crucial part, in-network aggregate query processing techniques are studied intensively in wireless sensor networks. Existing representative in-network aggregate query processing techniques propose routing algorithms and data structures for processing aggregate queries. However, these aggregate query processing techniques have problems such as high energy consumption in sensor nodes, low accuracy of query processing results, and long query processing time. In order to solve these problems and to enhance the efficiency of aggregate query processing in wireless sensor networks, this paper proposes Bucket-based Parallel Aggregation(BPA). BPA divides a query region into several cells according to the distribution of sensor nodes and builds a Quad-tree, and then processes aggregate queries in parallel for each cell region according to routing. And it sends data in duplicate by removing redundant data, which, in turn, enhances the accuracy of query processing results. Also, BPA uses a bucket-based data structure in aggregate query processing, and divides and conquers the bucket data structure adaptively according to the number of data in the bucket. In addition, BPA compresses data in order to reduce the size of data in the bucket and performs data transmission filtering when each sensor node sends data. Finally, in this paper, we prove its superiority through various experiments using sensor data.

EPR : Enhanced Parallel R-tree Indexing Method for Geographic Information System (EPR : 지리 정보 시스템을 위한 향상된 병렬 R-tree 색인 기법)

  • Lee, Chun-Geun;Kim, Jeong-Won;Kim, Yeong-Ju;Jeong, Gi-Dong
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.9
    • /
    • pp.2294-2304
    • /
    • 1999
  • Our research purpose in this paper is to improve the performance of query processing in GIS(Geographic Information System) by enhancing the I/O performance exploiting parallel I/O and efficient disk access. By packing adjacent spatial data, which are very likely to be referenced concurrently, into one block or continuous disk blocks, the number of disk accesses and the disk access overhead for query processing can be decreased, and this eventually leads to the I/O time decrease. So, in this paper, we proposes EPR(Enhanced Parallel R-tree) indexing method which integrates the parallel I/O method of the previous Parallel R-tree method and a packing-based clustering method. The major characteristics of EPR method are as follows. First, EPR method arranges spatial data in the increasing order of proximity by using Hilbert space filling curve, and builds a packed R-tree by bottom-up manner. Second, with packing-based clustering in which arranged spatial data are clustered into continuous disk blocks, EPR method generates spatial data clusters. Third, EPR method distributes EPR index nodes and spatial data clusters on multiple disks through round-robin striping. Experimental results show that EPR method achieves up to 30% or more gains over PR method in query processing speed. In particular, the larger the size of disk blocks is and the smaller the size of spatial data objects is, the better the performance of query processing by EPR method is.

  • PDF

Distributed In-Memory based Large Scale RDFS Reasoning and Query Processing Engine for the Population of Temporal/Spatial Information of Media Ontology (미디어 온톨로지의 시공간 정보 확장을 위한 분산 인메모리 기반의 대용량 RDFS 추론 및 질의 처리 엔진)

  • Lee, Wan-Gon;Lee, Nam-Gee;Jeon, MyungJoong;Park, Young-Tack
    • Journal of KIISE
    • /
    • v.43 no.9
    • /
    • pp.963-973
    • /
    • 2016
  • Providing a semantic knowledge system using media ontologies requires not only conventional axiom reasoning but also knowledge extension based on various types of reasoning. In particular, spatio-temporal information can be used in a variety of artificial intelligence applications and the importance of spatio-temporal reasoning and expression is continuously increasing. In this paper, we append the LOD data related to the public address system to large-scale media ontologies in order to utilize spatial inference in reasoning. We propose an RDFS/Spatial inference system by utilizing distributed memory-based framework for reasoning about large-scale ontologies annotated with spatial information. In addition, we describe a distributed spatio-temporal SPARQL parallel query processing method designed for large scale ontology data annotated with spatio-temporal information. In order to evaluate the performance of our system, we conducted experiments using LUBM and BSBM data sets for ontology reasoning and query processing benchmark.