• Title/Summary/Keyword: spatial grid model

Search Result 333, Processing Time 0.027 seconds

Development of GRld-eased Soil MOsture Routing Model (GRISMORM) Applied to Bocheongchun Watershed (격자기반의 토양수분추적표형 개발 : 보청천 유역 사례연구)

  • 김성준;채효석
    • Spatial Information Research
    • /
    • v.7 no.1
    • /
    • pp.39-48
    • /
    • 1999
  • A GRId-based Soil MOsture Routing Model(GRISMORM) which predicts temporal variation and spatial distribution of water balance on a daily time step for each grid element of the watershed was developed. The model was programmed by C-language which aims for high flexibility to any kind of GIS softwares. The model uses ASCII-formatted map data supported by the irregular gridded map of the GRASS(Geographic Resources Analysis Support System)-GIS and generates daily or monthly spatial distribution map of water balance components within the watershed. The model was applied to Ipyunggyo watershed(75.6$km^2$) ; the part of Bocheongchun watershed. Predicted streamflows resulting from two years(95 and 96) daily data were compared with those observed at the watershed outlet. The results of temporal variation and spatial distribution of soil moisture are also presented by using GRASS.

  • PDF

Analysing Spatial Usage Characteristics of Shared E-scooter: Focused on Spatial Autocorrelation Modeling (공유 전동킥보드의 공간적 이용특성 분석: 공간자기상관모형을 중심으로)

  • Kim, Sujae;Koack, Minjung;Choo, Sangho;Kim, Sanghun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.1
    • /
    • pp.54-69
    • /
    • 2021
  • Policy improvement such as the revision of the Road Traffic Act are proposed for personal mobility(especially e-scooter) usage. However, there is not enough discussion to solve the problem of using shared e-scooter. In this study, we analyze the influencing factors that amount of pick-up and drop-off of shared e-scooter by dividing the Seoul into a 200m grid. we develop spatial auotcorrelation model such as spatial lag model, spatial error model, spatial durbin model, and spatial durbin error model in order to consider the characteristics of the aggregated data based on a specific space, and the spatial durbin error model is selected as the final model. As a result, demographic factor, land use factor, and transport facility factors have statistically significant impacts on usage of shared e-scooter. The result of this study will be used as basic data for suggesting efficient operation strategies considering the characteristics of weekday and weekend.

Prediction of the Diffusion Controlled Boundary Layer Transition with an Adaptive Grid (적응격자계를 이용한 경계층의 확산제어천이 예측)

  • Cho J. R.
    • Journal of computational fluids engineering
    • /
    • v.6 no.4
    • /
    • pp.15-25
    • /
    • 2001
  • Numerical prediction of the diffusion controlled transition in a turbine gas pass is important because it can change the local heat transfer rate over a turbine blade as much as three times. In this study, the gas flow over turbine blade is simplified to the flat plate boundary layer, and an adaptive grid scheme redistributing grid points within the computation domain is proposed with a great emphasis on the construction of the grid control function. The function is sensitized to the second invariant of the mean strain tensor, its spatial gradient, and the interaction of pressure gradient and flow deformation. The transition process is assumed to be described with a κ-ε turbulence model. An elliptic solver is employed to integrate governing equations. Numerical results show that the proposed adaptive grid scheme is very effective in obtaining grid independent numerical solution with a very low grid number. It is expected that present scheme is helpful in predicting actual flow within a turbine to improve computation efficiency.

  • PDF

A Sensitivity Analysis on Numerical Grid Size of a Three-Dimensional Hydrodynamic and Water Quality Model (EFDC) for the Saemangeum Reservoir (새만금호 3차원 수리.수질모델(EFDC)의 수치격자 민감도 분석)

  • Jeon, Ji Hye;Chung, Se Woong
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.1
    • /
    • pp.26-37
    • /
    • 2012
  • Multi-dimensional hydrodynamic and water quality models are widely used to simulate the physical and biogeochemical processes in the surface water systems such as reservoirs and estuaries. Most of the models have adopted the Eulerian grid modeling framework, mainly because it can reasonably simulate physical dynamics and chemical species concentrations throughout the entire model domain. Determining the optimum grid cell size is important when using the Eulerian grid-based three-dimensional water quality models because the characteristics of species are assumed uniform in each of the grid cells and chemical species are represented by concentration (mass per volume). The objective of this study was to examine the effect of grid-size of a three dimensional hydrodynamic and water quality model (EFDC) on hydrodynamics and mass transport in the Saemangeum Reservoir. Three grid resolutions, respectively representing coarse (CG), medium (MG), and fine (FG) grid cell sizes, were used for a sensitivity analysis. The simulation results of numerical tracer showed that the grid resolution affects on the flow path, mass transport, and mixing zone of upstream inflow, and results in a bias of temporal and spatial distribution of the tracer. With the CG, in particular, the model overestimates diffusion in the mixing zone, and fails to identify the gradient of concentrations between the inflow and the ambient water.

Sub-grid study of scaling effects to evapotranspiration of heterogeneous forest landscape at the Volga source area in Russia

  • Oltchev, A.;G.Gravenhorst;A.P.Tishenko;Joo, Y.T.
    • Proceedings of The Korean Society of Agricultural and Forest Meteorology Conference
    • /
    • 2001.06a
    • /
    • pp.151-152
    • /
    • 2001
  • A common problem of the model simulations of the land surface - atmosphere interaction is to choose the appropriate spatial scale and resolution at which the simulations are to be performed. The accuracy of energy and water exchange predictions between the land surface and the atmosphere in regional and global scale atmospheric models is mainly influenced by: model simplifications applied to describe the spatial heterogeneity of land surface properties within individual grid cells; ignoring the variability of sub-grid properties (e.g. relief, vegetation, soils), and; lacks of necessary input meteorological and biophysical data.(omitted)

  • PDF

A Modified grid-based KIneMatic wave STOrm Runoff Model (ModKIMSTORM) (I) - Theory and Model - (격자기반 운동파 강우유출모형 KIMSTORM의 개선(I) - 이론 및 모형 -)

  • Jung, In Kyun;Lee, Mi Seon;Park, Jong Yoon;Kim, Seong Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6B
    • /
    • pp.697-707
    • /
    • 2008
  • The grid-based KIneMatic wave STOrm Runoff Model (KIMSTORM) by Kim (1998) predicts the temporal variation and spatial distribution of overland flow, subsurface flow and stream flow in a watershed. The model programmed with C++ language on Unix operating system adopts single flowpath algorithm for water balance simulation of flow at each grid element. In this study, we attempted to improve the model by converting the code into FORTRAN 90 on MS Windows operating system and named as ModKIMSTORM. The improved functions are the addition of GAML (Green-Ampt & Mein-Larson) infiltration model, control of paddy runoff rate by flow depth and Manning's roughness coefficient, addition of baseflow layer, treatment of both spatial and point rainfall data, development of the pre- and post-processor, and development of automatic model evaluation function using five evaluation criteria (Pearson's coefficient of determination, Nash and Sutcliffe model efficiency, the deviation of runoff volume, relative error of the peak runoff rate, and absolute error of the time to peak runoff). The modified model adopts Shell Sort algorithm to enhance the computational performance. Input data formats are accepted as raster and MS Excel, and model outputs viz. soil moisture, discharge, flow depth and velocity are generated as BSQ, ASCII grid, binary grid and raster formats.

Effect of Nonuniform Vertical Grid on the Accuracy of Two-Dimensional Transport Model

  • Lee, Chung-Hui;Cheong, Hyeong-Bin;Kim, Hyun-Ju;Kang, Hyun-Gyu
    • Journal of the Korean earth science society
    • /
    • v.39 no.4
    • /
    • pp.317-326
    • /
    • 2018
  • Effect of the nonuniform grid on the two-dimensional transport equation was investigated in terms of theoretical analysis and finite difference method (FDM). The nonuniform grid having a typical structure of the numerical weather forecast model was incorporated in the vertical direction, while the uniform grid was used in the zonal direction. The staggered and non-staggered grid were placed in the vertical and zonal direction, respectively. Time stepping was performed with the third-order Runge Kutta scheme. An error analysis of the spatial discretization on the nonuniform grid was carried out, which indicated that the combined effect of the nonuniform grid and advection velocity produced either numerical diffusion or numerical adverse-diffusion. An analytic function is used for the quantitative evaluation of the errors associated with the discretized transport equation. Numerical experiments with the non-uniformity of vertical grid were found to support the analysis.

Spatial Selectivity Estimation for Intersection region Information Using Cumulative Density Histogram

  • Kim byung Cheol;Moon Kyung Do;Ryu Keun Ho
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.721-725
    • /
    • 2004
  • Multiple-count problem is occurred when rectangle objects span across several buckets. The Cumulative Density (CD) histogram is a technique which solves multiple-count problem by keeping four sub-histograms corresponding to the four points of rectangle. Although it provides exact results with constant response time, there is still a considerable issue. Since it is based on a query window which aligns with a given grid, a number of errors may be occurred when it is applied to real applications. In this paper, we proposed selectivity estimation techniques using the generalized cumulative density histogram based on two probabilistic models: (1) probabilistic model which considers the query window area ratio, (2) probabilistic model which considers intersection area between a given grid and objects. In order to evaluate the proposed methods, we experimented with real dataset and experimental results showed that the proposed technique was superior to the existing selectivity estimation techniques. The proposed techniques can be used to accurately quantify the selectivity of the spatial range query on rectangle objects.

  • PDF

Application of Grid-based Kinematic Wave Storm Runoff Model

  • Kim, Seong-Joon;Kim, Sun-Joo;Chae, Hyo-Seok
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.S1
    • /
    • pp.20-27
    • /
    • 2000
  • The grid-based KIneMatic wave STOrm Runoff Model(Kim, 1998; Kim, et al., 1998) which predicts temporal variation and spatial distribution of saturated overland flow, subsurface flow and stream flow was evaluated at two watersheds. this model adopts the single overland flowpath algorithm and simulates surface and/or subsurface water depth at each cell by using water balance of hydrologic components. the model programmed by C-language uses ASCII-formatted map data supported by the irregular gridded map of the GRASS (Geographic Resources Analysis Support System) GIS and generates the spatial distribution maps of discharge, flow depth and soil moisture of the watershed.

  • PDF

A Windowed-Total-Variation Regularization Constraint Model for Blind Image Restoration

  • Liu, Ganghua;Tian, Wei;Luo, Yushun;Zou, Juncheng;Tang, Shu
    • Journal of Information Processing Systems
    • /
    • v.18 no.1
    • /
    • pp.48-58
    • /
    • 2022
  • Blind restoration for motion-blurred images is always the research hotspot, and the key for the blind restoration is the accurate blur kernel (BK) estimation. Therefore, to achieve high-quality blind image restoration, this thesis presents a novel windowed-total-variation method. The proposed method is based on the spatial scale of edges but not amplitude, and the proposed method thus can extract useful image edges for accurate BK estimation, and then recover high-quality clear images. A large number of experiments prove the superiority.