• 제목/요약/키워드: spatial generalized linear mixed model

검색결과 3건 처리시간 0.017초

공간적 상관관계가 존재하는 이산형 자료를 위한 일반화된 공간선형 모형 개관 (Review of Spatial Linear Mixed Models for Non-Gaussian Outcomes)

  • 박진철
    • 응용통계연구
    • /
    • 제28권2호
    • /
    • pp.353-360
    • /
    • 2015
  • 공간적으로 관측되는 연속형 자료를 분석하는 모형으로 공간적 상관관계를 고려한 다양한 정규모형이 지난 수십 년간 제안되었다. 그 중에서 공간효과를 랜덤효과로 모형화하는 공간선형모형(Spatial Linear Mixed Model; SLMM)이 가장 널리 활용되는 모형 중 하나일 것이다. 연결함수(link function)을 사용하면 SLMM을 비정규 데이터도 적용할 수 있는 일반화된 공간선형모형(Spatial Generalized Linear Mixed Model; SGLMM)으로 자연스럽게 확장할 수 있다. 이 논문에서는 가장 널리 활용되는 SGLMM을 알아보고 실제 데이터 적용사례를 R 패키지를 활용하여 제시하고자 한다.

Use of Generalized Linear Mixed Model for Pest Density in Repeated Measurement Data

  • Park, Heung-Sun;Cho, Ki-Jong
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2003년도 춘계 학술발표회 논문집
    • /
    • pp.69-74
    • /
    • 2003
  • The estimation of pest density is a prime concern of Integrated Pest Management (IPM) because the success of artificial intervention such as spraying pestcides or natural enemies depends on pest density. Also, the spatial pattern of pest population within plants or plots has been studies in various ways. In this study, we applied generalized linear mixed model to Tetranychus urticae Koch , two-spotted spider mite count in glasshouse grown roses. For this analysis, the subject-specific as well as pupulation-averaged approaches are used.

  • PDF

공간 다수준 분석을 이용한 부산지역 암발생 및 암사망 추정 (Cancer incidence and mortality estimations in Busan by using spatial multi-level model)

  • 고영규;한준희;윤태호;김창훈;노맹석
    • Journal of the Korean Data and Information Science Society
    • /
    • 제27권5호
    • /
    • pp.1169-1182
    • /
    • 2016
  • 한국인의 전형적인 사망 원인인 암은 보건 분야에서 중요한 문제이다. 통계청이 제시한 Cause of death statistics (2014)에 따르면, 7대 광역시 중 부산의 표준화 사망률 (standardized mortality rate; SMR)이 가장 높게 나타났다. 이 논문에서는 부산지역암센터의 암등록자료를 이용하여 암발생률과 암사망률의 정도를 추정하고자 한다. 2003~2009년 자료를 대상으로 구/동과 같은 소지역 단위를 고려하였으며, 전체 암과 4대 주요암 (위암, 대장암, 폐암, 간암)에 대해 분석하였다. 공간 상관성을 고려한 공간 다수준 모형을 통해 모형 선택과 모수 추정을 수행하였다. 공간 효과에 대해서는 조건부 자기회귀 (conditional autoregressive; CAR)를 가정하였으며 WinBUGS를 이용하였다. 분석의 결과로 각 지역에서의 공간 효과를 어떻게 분석하고 해석하는지 제시하였다.