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Use of Generalized Linear Mixed Model for Pest
Density in Repeated Measurement Data

Heungsun Park* and Kijong Cho!

ABSTRACT

The estimation of pest density is a prime concern of Integrated Pest Management (IPM)
because the success of artificial intervention such as spraying pestcides or natural enemies
depends on pest density. Also, the spatial pattern of pest population within plants or plots
has been studies in various ways. In this study, we applied generalized linear mixed model
to Tetranychus urticae Koch , two-spotted spider mite count in glasshouse grown roses. For

this analysis, the subject-specific as well as pupulation-averaged approaches are used.
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1 INTRODUCTION

The two-spotted spider mites (TSSM), Tetranychus urticae Koch (Acari: Tetranychidae),
are among the most serious pests of many ornamental plants, including the glasshouse rose
which is the most important cut flower plant. This species causes damage to glasshouse roses
not only by destruction of chloroplasts, but also by their webbing which leads to aesthetic
injury. Adult two-spotted spider mites are the sizes of 0.3-0.5 millimeters and are able to
live for 30 days in 25 degrees Celsius.

To take a control of this pest, we need to know the distributional pattern or spatial
pattern within plants, so that the relevant pesticides can be applied at the right spot. For
this study, we randomly select 24 rose plants within a glass house and observed the mite
counts once a month from June 1997 to November 1997. From a selected plant, we collected
3 leaves (high, medium, low) from each vertical position (down, mid, up), and the number
of mites were counted from each collected leaf surface with a microscope.

The prime purpose of this study is to investigate the significance of the effects such
as time, plant, position and leaves. To do this, we used Generalized Estimating Equation
(GEE) for repeated data analysis, which Liang and Zeger (1986) presented as an extension
of generalized linear models (McCullagh and Nelder, 1989) to the repeated data analysis,
which is a population-averaged approach (Zeger, Liang and Albert,1988). Besides this,
as a subject-specific approach, we used penalized quasilikelihood (PQL) estimation method
which Breslow and Clayton (1993) developed to handle random effects within the generalized
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linear model framework, and used the algorithm Wolfinger and O’connell (1993) presented
in a SAS macro program (SAS, 1992), GLIMMIX.

2 GEE and PQL

When Y; = (yi1,%i, -+, %s,)T denotes the ¢; x 1(¢; < t) vector of outcome and X; =

(xf,z%,--+,2F ) the t; x p matrix of covariates, where z;; is a 1 X p covariate vector for
i =1,---,n. The marginal density of y;; is
vii0ii — b(6;;
o) = oxp [P0 4 opy00). )

The corresponding mean and variance of y;; are derived as

E(yi;) = mi; = 0'(8i5), var(yiz) = V(wiz)a(e), (2)

where V() = b"(0y5) is the variance function and ¢ is an unknown scale parameter.
When we let n; = X;0, where n; = (i1, -, mi,)T with ni; = 9(ps;) and 7y = xy;6. Here
B = (B1,B2,++,8p)T is the p x 1 vector of unknown parameters and g(.) is a link function.
Note that for binary outcome variables, g(y;;) = log(ui; /(1 —piz)), V(pij) = pai (1 — paz)
and a(¢) = 1. For Poisson count outcomes, g{ui;) = log(pi;), V(is;) = pi; and a(¢) = 1.
If S; =Y; — p; with p; = (a1, -+, pie;) - and D; = 8y, /00, the quasilikelihood estimation

type equation for the i-th subject is
DIv71S; =0 (3)

where V; is equal to cov(Y;). Therefore, the generalized estimating équation for the repeated

data for n independent subjects is defined as

> DTV ls =0. (4)

i=1

Then V;, the t; x t; working covariance matrix can be partitioned into
Vi = (A:i®:)"?Ri(0)(4:9:)'/? (5)

where A;®; is a t; xt; diagonal matrix with var(¥;) = A;®;, ®; is defined as ® = diag(¢1,- -, ¢1),
and A; is a ¢; X t; matrix defined as A; = diag(b/7(5)).
As for the penalized quasilikelihood estimation, we consider a linear (nonlinear) link

function g(.) such as
9(p) = Xa+ 2 (6)

where a is a vector of unknown fixed effects with a covariate matrix X, and £ is a vector of
unknown random effects with a corresponding matrix Z. Assume E(3) = 0 and cov(8) = D,

where D is unknown. Also, e = y — p is a unknown error with E(e|u) = 0 and

cov(e|u) = RY/*RR./? (7)
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Table 1: Parameter Estimates in population-averaged model (GEE) with Compound Sym-
metry structure for Two-Spotted Mite Count data

Parameter DF Estimate S.E.
Intercept 1 2.1347 0.0423
down 1 -0.3030 0.0731
mid 1 -0.5463  0.0778
up 0 0.0000  0.0000
date 1 1 -0.4314  0.0684

1

1

1

1

0

date 2 -0.4925  0.0669
date 3 -1.2812  0.0892
date 4 -1.9570  0.1158
date 5 -1.6148  0.1039
date 6 0.0000  0.0000

where R, is a diagonal matrix containing evaluations at p of a known variance function
and R is unknown. To maximize [ over D and R, we need a numerical method such as
Newton-Raphson or EM algorithm. Once we get D and R, the estimates for a and § are
obtained by solving the mixed model equation defined as

& XTW2R-1wi/2y
H B = [ ZTWY2R-1Ww1/2, (8)
where
XTwl/ZR—lwl/ZX XTW1/2R—1W1/2Z
H= ZTW2R-1Wwi/2x ZTwWl2R-1wi/2Z 4 D-1 (9)
The results of solving the equations are followings:
& = (XTV1x)"1xTv-ly
B = DZTV-7 (10)

3 SAS Programs

PROC GENMOD in SAS software provides a way to handle an algorithm of GEE for
repeated data analysis. With mite data, we adopted GEE method as in Appendix.

The estimation of fixed effects helps us to understand the spatial distribution of mites
within plants. This spatial distribution is of prime interest for plant farmers because they
want to spray the pesticides as little as possible and kill the pest efficiently. The Table 1
gives us a hint that the density of mites are distributed differently along the vertical position.
Also, date effect is significant so that we can say mite density differs day by day.

In order to investigate more detail, we can use contrast statement as shown in previous

code. The result shows that down, mid and up position have different density of mites. In
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Table 2: Contrast Results for GEE Analysis

Contrast DF Square Pr > ChiSq Type
pos mid to up 1 10.35 0.0013 Score
pos down to up 1 8.89 0.0029 Score
pos down to mid 1 0.00 0.9801 Score

Table 3; Parameter Estimates in population-averaged model (GEE) with Compound Sym-
metry structure for Two-Spotted Mite Count data

Parameter DF Estimate S.E.

Intercept 1 2.0872 0.1280
down 1 -0.3539  0.1702
mid 1 -0.5050  0.1806
up 0 0.0000  0.0000
date 1 1 -0.4630  0.1552
date 2 1 -0.5036  0.1518
date 3 1 -1.2978  0.2028
date 4 1 -1.9681  0.2635
date 5 1 -1.6448  0.2370
0

date 6 0.0000  0.0000

detail, there is significant difference between down and up or between mid and up, but not

between mid and down.

The same mite data observed within 6 equally spaced period are analyzed in penalized
quasilikelihood estimation method via GLIMMIX macro program. The relevant code is
described as in Appendix.

As shown above, the main difference from GEE is to handle random effect. (i.e. I treat
plant effect as random) As I select 24 plants among their population group randomly, I
believe that this is a more reasonable approach than the previous GEE method. Qur prime
interest lies in searching for significant effects, so that I investigate the fixed effects first.

As you see, there exists the vertical spatial pattern as well as day to day difference.
These results coincide with that of GEE even though the estimates are slight different.

Table 4: Contrast Results for GLIMMIX Analysis

Standard
Label Estimate Error DF t Pr > |t
pos mid to up -0.5029 0.1338 1090 -3.76 0.0002

pos down to up -0.5156 0.1406 1090 -3.67 0.0003
pos down to mid  -0.01263 0.1622 1090 -0.08 0.9380
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The interaction between plant*position is negligible, so we can say that the position
effect and date effect are significant with 0.05 significance level.

4 CONCLUSION

The longitudinal data analysis with random effect is applied to mite count in glasshouse
roses via population-averaged approach as well as subject-specific approach. Even though
GEE provides a way to handle repeated data analysis in generalized frame work, it cannot
distinguish the random effect which mostly resides in practical data, such as in nested
sampling or split plot designs. As penalized quasilikelihood adopted in GLIMMIX (Wolfinger
& O’connell, 1993) can be an alternative in this situation, this subject-specific approach is
compared with GEE case. The conclusion of these two analysis are identical even though
the estimates and p-values are different. As there are two different handy methods, GEE
and GLIMMIX, for longitudinal data analysis in generalized linear models, many people
get confused which one to use and how different. This research will help those who want
to utilize GLIMMIX macro for their own field, specially longitudinal data combined with

random effects.

APPENDIX
data a;
input date $ plant position $ lnum tssm ;
cards;
97-6-20 1 up 1 0
97-6-20 1 up 2 1
97-6-20 1 up 3 0

97-6-20 1 mid 1 0

proc genmod data=a;
class plant position lnum date;
model tssm=position date position*date/dist=poisson;
repeated sub=lnum(plant*position) /type=cs corrw;
contrast ’pos mid to up’ position
01-1000000000000000006000000 0;
contrast ’pos down to up’ position
10-1000000000000000000000000;
contrast ’pos down to mid’ position
1-10000000000000000000000000;
run;

%glimmix (data=a,
procopt=method=reml,
stmts=Ystr(
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class plant position lnum date;
model tssm = position date position*date/solution;
random plant;
repeated /type=cs sub=lnum(plant*position) rcorr;
estimate ’pos mid to up’ position 0 1 -1;
estimate ’pos down to up’ position 1 0 -1;
estimate ’pos down to mid’ position 1 -1 O;
), error=poisson, link=log )

run;
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