• Title/Summary/Keyword: spatial data processing

Search Result 999, Processing Time 0.027 seconds

An Image Concealment Algorithm Using Fuzzy Inference (퍼지 추론을 이용한 영상은닉 알고리즘)

  • Kim, Ha-Sik;Kim, Yoon-Ho
    • Journal of Advanced Navigation Technology
    • /
    • v.11 no.4
    • /
    • pp.485-492
    • /
    • 2007
  • In this paper, we propose the receiver block error detection of the video codec and the image concealment algorithm using fuzzy inference. The proposed error detection and concealment algorithm gets SSD(Summation of Squared Difference) and BMC(Boundary Matching Coefficient) using the temporal and spatial similarity between corresponded blocks in the two successive frames. Proportional constant, ${\alpha}$, for threshold value, TH1 and TH2, is decided after fuzzy data is generated by each parameter. To examine the propriety of the proposed algorithm, random errors are inserted into the QCIF Susie standard image, then the error detection and concealment performance is simulated. To evaluate the efficiency of the algorithm, image quality is evaluated by PSNR for the error detection and concealed image by the existing VLC table and by the proposed method. In the experimental results, the error detection algorithm could detect all of the inserted error, the image quality is improved over 15dB after the error concealment compare to existing error detection algorithm.

  • PDF

Adaptive Projection Matrix Beamformer for Frequency Hopping Systems Robust to Jamming environment (의도적 간접신호에 강한 주파수 도약 시스템용 적응 투영행렬 빔형성 기법)

  • Jung, Sung-Hun;Shim, Sei-Joon;Kim, Sang-Heon;Lee, Chung-Yong;Youn, Dae-Hee
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.8 s.338
    • /
    • pp.25-32
    • /
    • 2005
  • Frequency hopping system has been adopted to many communication systems in order to overcome the inferior situation such as jamming environment. But typically its processing gain being limited, data interfered by jamming signal could not be fully recovered. This can be enhanced by combing FH system with spatial interference canceller which is a kind of active beamformer In this Paper, we proposed the compensation method of weight vector discrepancy according to the hopped frequencies and the PMBF method which is able to eliminate the inference effectively with less computational complexity. That is, the steering vector of wanted signals can be calculated from the frame without jamming signals using eigen analysis. New projection matrix extracted by the steering vector of wanted signal eliminates the interferences from the covariance matrix of received signal including wanted signal and jamming signals. This PMBF has similar performance of SINR beamformer with less computational complexity.

A measurement of flow noise spectrum of an axisymmetric body (축대칭 3차원 물체의 유동 소음 스펙트럼 측정)

  • Park, Yeon-Gyu;Kim, Yang-Han
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.6
    • /
    • pp.725-733
    • /
    • 1998
  • The pressure fluctuation on the surface of a submerged body has been recognized as a dominant noise source. There have been many studies concerning the flow induced noise on a flat plate. However, the noise over an axisymmetric body has not been well reported. This paper addresses the way in which we have investigated the mechanism of noise generation due to an axisymmetric body. The associated experiments and signal processing methods are introduced. A 3-dimensional axisymmetric body whose length and diameter were 2 m and 10.4 cm, was prepared as a test specimen. The wall pressure on the surface of the body was measured in a large scale low noise wind tunnel at KIMM(Korea Institute of Machinery and Metals). To measure the wall pressure, we used two microphone arrays which were tangential and normal to the flow. Based on the measured signal, frequency-wavenumber spectrum which explains the structure of turbulence noise, was estimated. Tangential to the flow, there exists convective ridge at a relatively higher wavenumber region; this can cause spatial aliasing. To circumvent this problem, the cross spectrum was interpolated. The interpolation has been performed by unwrapping the phase and smoothing the cross spectrum. The phase unwrapping was done based on the Corcos model; the phase of cross spectrum decreases linearly with the distance between microphones. Aforementioned signal processings are possible by employing the experimental results that the estimated wavenumber spectrum quite resembles the Corcos model. We try to modify the Corcos model which is applicable to the flat plate, by altering the magnitude of cross spectrum to fit the experimental data more accurately. We proposed that this wavenumber spectrum model is suitable for the 3-dimensional axisymmetric body. Normal to the flow, there exists a little correlation between signals of different microphones. The circumferential wavenumber spectrum contains uniform power along the wavenumbers.

Positron Emission Computed Tomographs and Image Reconstruction Methods (PET 장치와 화상 재구성법)

  • Lee, Man-Koo
    • Journal of radiological science and technology
    • /
    • v.22 no.1
    • /
    • pp.5-11
    • /
    • 1999
  • This paper reviews recent major activities on instrumentation and methodology of PET. The performance of the PET instrumentation can be expressed by four physical characteristics, 1) spatial resolution, 2) coincidence resolving time, 3) energy resolution, and 4) detection efficiency. The physical and technical aspects of PET systems are briefly discussed along with these characteristics. Toward high resolution PET the recent trend has been to design multiple rings of densely packed detector arrays with scintillators. In order to satisfy the sampling requirement in reconstruction, continuous detector units has been developed. Iterative image reconstruction algorithms have received considerable attention for improvement of both the sampling requirement and image quality toward the stationary PET. Better resolving time improves the maximum true coincidence rate, which is also increased with more detectors placed in coincidence with each other. It suggests that volume PET is promising for enhancement of detection efficiency. The scattered coincidence event rate may be reduced by using detectors with better energy resolution. The use of interplane septa, however, takes over improvement of energy resolution in 2D PET. Energy resolution becomes an important factor for image quality under the condition of septa removal such as volume PET. Toward full utilization of emitting photons, 3D reconstruction incorporating oblique rays has been studied, and volume reconstruction algorithms have been developed. Practical volume PET systems impose heavy burden not only to detector sets and coincidence circuits, but also to computers in the memory requirements and the data processing. In conclusion, there have been many ingenious methods in development of PET instrumentation, which are based on unique capability of PET. They will be expected to overcome technical limitations, and to approach the fundamental limits.

  • PDF

On the Lower Level Laplacian Pyramid Image Coding Using Vector Quantization (벡터 양자화를 이용한 저층 라플라시안 피라미드 영상의 부호화에 관한 연구)

  • 김정규;정호열;최태영
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.17 no.3
    • /
    • pp.213-224
    • /
    • 1992
  • An encoding technique based on region splitting and vector quantization is proposed for the lower level Laplacian pyramid images. The lower level Laplacian pyramid images have lower variance than higher levels but a great influence on compression ration due to large spatial area. And so from data compression viewpoint, we subdivide them with variance thresholding into two regions such as one called : flat region” and the other “edge region”, and encode the flat region with its mean value and the edge region as vector quantization method. The edge region can be reproduced faithfully and significant improvement on compression ratio can be accomplished with a little degradation of PSNR in spite of the effect of large flat region since the codebook used is generated from the edge region only on from the entire image including the flat region. It can be verified by computer simulation results that proposed method is more efficient in compression ratio and processing time than the conventional encoding technique of vector quantization.

  • PDF

An Efficient Spectrum Sensing Technique for Wireless Energy Harvesting Systems (무선에너지하비스팅 시스템을 위한 효율적인 스펙트럼 센싱 기법)

  • Hwang, Yu Min;Shin, Yoan;Kim, Dong In;Kim, Jin Young
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.4
    • /
    • pp.141-145
    • /
    • 2017
  • Spectrum sensing is a critical functionality of Cognitive Radio(CR) systems and the CR systems can be applied to RF energy harvesting systems to improve an energy harvesting rate. There are number of spectrum sensing techniques. One of techniques is energy detection. Energy detection is the simplest detection method and is the most commonly used. But, energy detection has a hidden terminal problem in real wireless communication, because of secondary user (SU) can be affected by frequency fading and shadowing. Cooperative spectrum sensing can solve this problem using spatial diversity of SUs. But it has a problem of increasing data by processing multiple secondary. So, we propose the system model using adaptive spectrum sensing algorithm and system model is simulated. This algorithm chooses sensing method between single energy sensing and cooperative energy according to the received signal's Signal to Noise Ratio (SNR) from Primary User (PU). The simulation result shows that adaptive spectrum sensing has an efficiency and improvement in CR systems.

Investigation and Analysis of Forest Geospatial Information Using Drone (드론을 활용한 산림공간정보 조사 및 분석)

  • Park, Joon-Kyu;Jung, Kap-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.2
    • /
    • pp.602-607
    • /
    • 2018
  • The destruction of forests requires continuous management due to the risk of disasters such as landslides and landslides. However, existing forest inspection methods are inefficient as they require a lot of manpower and time. Recently, drones are attracting attention as an effective way to construct and utilize spatial information. The size of the drone-related industrial market is rapidly increasing. In this study, we attempted to increase the efficiency of forest investigation utilizing drones. The study area was photographed through the use of drones, and ortho image and DSM were generated through data processing. Study results found that it was possible to calculate the area and the volume for the forest damaged area effectively by employing drones, and suggested the applicability of drones. In the future, it is expected that the method of analyzing the forested area using drones can save manpower and time compared to existing methods.

The Influence of Quantization Table in view of Information Hiding Techniques Modifying Coefficients in Frequency Domain (주파수 영역 계수 변경을 이용한 정보은닉기술에서의 양자화 테이블의 영향력)

  • Choi, Yong-Soo;Kim, Hyoung-Joong;Park, Chun-Myoung
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.46 no.1
    • /
    • pp.56-63
    • /
    • 2009
  • Nowdays, Most of Internet Contents delivered as a compressed file. It gives many advantages like deduction of communication bandwidth and transmission time etc. In case of JPEG Compression, Quantization is the most important procedure which accomplish the compression. In general signal processing, Quantization is the process which converts continuous analog signal to discrete digital signal. As you known already, Quantization over JPEG compression is to reduce magnitude of pixel value in spatial domain or coefficient in frequency domain. A lot of Data Hiding algorithms also developed to applicable for those compressed files. In this paper, we are going to unveil the influence of quantization table which used in the process of JPEG compression. Even thought most of algorithm modify frequency coefficients with considering image quality, they are ignoring the influence of quantization factor corresponding with the modified frequency coefficient. If existing algorithm adapt this result, they can easily evaluate their performances.

Extracting Topographic Information from SPOT-5 HRG Stereo Images (SPOT-5 HRG 스테레오 영상으로부터 지형정보 추출)

  • Lee, Jin-Duk;Lee, Seong-Sun;Jeong, Tae-Sik
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.14 no.4 s.38
    • /
    • pp.61-70
    • /
    • 2006
  • This paper presents photogrammetric processing to generate digital elevation models using SPOT-5 HRG stereo images and deals with the accuracy potential of HRG (High Resolution Geometry) supermode imagery for DEM generation. After bundle adjustment was preformed for sensor modelling, digital surface models were generated through the procedures of Epipolar image resampling and image matching. The DEM extracted from HRG imagery was compared along several test sections with the the refernce DEM which was obtained from the digital topographic maps of a scale of 1 to 5000. The ratio of the zone with DEM errors less than 5m to the whole zone was 53.8%, and about 2.5m RMSE was showed when assuming that the zones larger than 5m were affected by clouds, water bodies and buildings and excluding those zones from accuracy evaluation. In addition, the three-dimensional bird's eye view model and 3D building model were producted based on the DSM which was extracted from SPOT-5 HRG data.

  • PDF

Low Power Architecture of FIR Filter for 2D Image Filter (2D Image Filter에 적합한 저전력 FIR Filter의 구현)

  • Han, Chang-Yeong;Park, Hyeong-Jun;Kim, Lee-Seop
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.9
    • /
    • pp.663-670
    • /
    • 2001
  • This paper proposes a new power reduction method for 2D FIR (Finite Impulse Response) filters. We exploited the spatial redundancy of image data in order to reduce power dissipation in multiplication of FIR filters. Since the higher bits of input pixels are hardly changed, the redundant multiplication of higher bits is avoided by separating multiplication into higher and lower parts. The calculated values of higher bits are stored in memory cells, cache such that they can be reused when a cache hit occurs. Therefore, we can reduce power in 2D FIR Filter modules about 15% by using the proposed separated multiplication Technique (SMT).

  • PDF