• Title/Summary/Keyword: spatial data analysis

Search Result 3,567, Processing Time 0.033 seconds

Detection of Hotspots on Multivariate Spatial Data

  • Moon, Sung-Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.4
    • /
    • pp.1181-1190
    • /
    • 2006
  • Statistical analyses for spatial data are important features for various types of fields. Spatial data are taken at specific locations or within specific regions and their relative positions are recorded. Lattice data are synoptic observation covering an entire spatial region, like cancer rates corresponding to each county in a state. Until now, the echelon analysis has been applied only to univariate spatial data. As a result, it is impossible to detect the hotspots on the multivariate spatial data In this paper, we expand the spatial data to time series structure. And then we analyze them on the time space and detect the hotspots. Echelon dendrogram has been made by piling up each multivariate spatial data to bring time spatial data. We perform the structural analysis of temporal spatial data.

  • PDF

Non-Duplication Loading Method for supporting Spatio-Temporal Analysis in Spatial Data Warehouse (공간 데이터웨어하우스에서 시공간 분석 지원을 위한 비중복 적재기법)

  • Jeon, Chi-Soo;Lee, Dong-Wook;You, Byeong-Seob;Lee, Soon-Jo;Bae, Hae-Young
    • Journal of Korea Spatial Information System Society
    • /
    • v.9 no.2
    • /
    • pp.81-91
    • /
    • 2007
  • In this paper, we have proposed the non-duplication loading method for supporting spatio-temporal analysis in spatial data warehouse. SDW(Spatial Data Warehouse) extracts spatial data from SDBMS that support various service of different machine. In proposed methods, it extracts updated parts of SDBMS that is participated to source in SDW. And it removes the duplicated data by spatial operation, then loads it by integrated forms. By this manner, it can support fast analysis operation for spatial data and reduce a waste of storage space. Proposed method loads spatial data by efficient form at application of analysis and prospect by time like spatial mining.

  • PDF

Categorical Data Analysis by Means of Echelon Analysis with Spatial Scan Statistics

  • Moon, Sung-Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.15 no.1
    • /
    • pp.83-94
    • /
    • 2004
  • In this study we analyze categorical data by means of spatial statistics and echelon analysis. To do this, we first determine the hierarchical structure of a given contingency table by using echelon dendrogram then, we detect candidates of hotspots given as the top echelon in the dendrogram. Next, we evaluate spatial scan statistics for the zones of significantly high or low rates based on the likelihood ratio. Finally, we detect hotspots of any size and shape based on spatial scan statistics.

  • PDF

A Comparative Study on Spatial Lattice Data Analysis - A Case Where Outlier Exists - (공간 격자데이터 분석에 대한 우위성 비교 연구 - 이상치가 존재하는 경우 -)

  • Kim, Su-Jung;Choi, Seung-Bae;Kang, Chang-Wan;Cho, Jang-Sik
    • Communications for Statistical Applications and Methods
    • /
    • v.17 no.2
    • /
    • pp.193-204
    • /
    • 2010
  • Recently, researchers of the various fields where the spatial analysis is needed have more interested in spatial statistics. In case of data with spatial correlation, methodologies accounting for the correlation are required and there have been developments in methods for spatial data analysis. Lattice data among spatial data is analyzed with following three procedures: (1) definition of the spatial neighborhood, (2) definition of spatial weight, and (3) the analysis using spatial models. The present paper shows a spatial statistical analysis method superior to a general statistical method in aspect estimation by using the trimmed mean squared error statistic, when we analysis the spatial lattice data that outliers are included. To show validation and usefulness of contents in this paper, we perform a small simulation study and show an empirical example with a criminal data in BusanJin-Gu, Korea.

Topic Model Analysis of Research Trend on Spatial Big Data (공간빅데이터 연구 동향 파악을 위한 토픽모형 분석)

  • Lee, Won Sang;Sohn, So Young
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.41 no.1
    • /
    • pp.64-73
    • /
    • 2015
  • Recent emergence of spatial big data attracts the attention of various research groups. This paper analyzes the research trend on spatial big data by text mining the related Scopus DB. We apply topic model and network analysis to the extracted abstracts of articles related to spatial big data. It was observed that optics, astronomy, and computer science are the major areas of spatial big data analysis. The major topics discovered from the articles are related to mobile/cloud/smart service of spatial big data in urban setting. Trends of discovered topics are provided over periods along with the results of topic network. We expect that uncovered areas of spatial big data research can be further explored.

A Study on the Application of Fuzzy membership function in GIS Spatial Analysis - In the case of Evaluation of Waste Landfill - (GIS 공간분석에 있어 Fuzzy 함수의 적용에 관한 연구 -쓰레기 매립장 적지분석을 중심으로-)

  • Lim, Seung-Hyeon;Hwang, Ju-Tae;Park, Young-Ki;Lee, Jang-Choon
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.15 no.2 s.40
    • /
    • pp.43-49
    • /
    • 2007
  • In this study, a GIS spatial analysis method adopted fuzzy concept was introduced and land suitability analysis of waste landfill were conducted through this method. Previous studies conducted site evaluation and land suitability analysis by appling spatial overlay of conventional GIS that based on the boolean logic of crisp set. However these method can not consider the uncertainty of spatial data and the incongruity of data classification criteria, because these method handle spatial data based on the boolean logic of crisp set. As not provided trustable analysis result, conventional GIS spatial overlay method lacks opportunity for expanding use in reality. This study selected waste landfill as facility for analysis and applied fuzzy spatial analysis method as an objective approach. In the concrete contents of study, a series process with regard to the definition procedure of membership function for continuous data and the fuzzy input value generation of spatial data for fuzzy analysis is established. As a result, in this study we proposed a method that derive parameters for deciding the membership function of spatial data by considering the criterion of data classification and factor selection for land suitability analysis of waste landfill.

  • PDF

A Study on Policy and System Improvement Plan of Geo-Spatial Big Data Services in Korea

  • Park, Joon Min;Yu, Seon Cheol;Ahn, Jong Wook;Shin, Dong Bin
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.6
    • /
    • pp.579-589
    • /
    • 2016
  • This research focuses on accomplishing analysis problems and issues by examining the policies and systems related to geo-spatial big data which have recently arisen, and suggests political and systemic improvement plan for service activation. To do this, problems and probable issues concerning geo-spatial big data service activation should be analyzed through the examination of precedent studies, policies and planning, pilot projects, the current legislative situation regarding geo-spatial big data, both domestic and abroad. Therefore, eight political and systematical improvement plan proposals are suggested for geo-spatial big data service activation: legislative-related issues regarding geo-spatial big data, establishing an exclusive organization in charge of geospatial big data, setting up systems for cooperative governance, establishing subsequent systems, preparing non-identifying standards for personal information, providing measures for activating civil information, data standardization on geo-spatial big data analysis, developing analysis techniques for geo-spatial big data, etc. Consistent governmental problem-solving approaches should be required to make these suggestions effectively proceed.

Interoperability of OpenGIS Component and Spatial Analysis Component (개방형 GIS 컴포넌트에서의 공간분석 컴포넌트 연동)

  • Min, Kyoung-Wook;Jang, In-Sung;Lee, Jong-Hun
    • Journal of Korea Spatial Information System Society
    • /
    • v.3 no.1 s.5
    • /
    • pp.49-62
    • /
    • 2001
  • Recently, component-based software has become main trends in designing and developing computer software products. This component-based software has advantage of the interoperability on distributed computing environment and the reusability of pre-developed components. Also, GIS is designed and implemented with this component-based methodology, called Open GIS Component. OGC(OpenGIS Consortium) have announced various implementation and design specification and topic in GIS. In GIS, Spatial analysis functions like network analysis, TIN analysis are very important function and basically, estimate system functionality and performance using this analysis methods. The simple feature geometry specification is announced by OGC to increase the full interoperability of various spatial data. This specification includes just geometry spatial data model. However, in GIS which manages spatial data, not only geometric data but also topological data and various analysis functions have been used. The performance of GIS depends on how this geometric and topological data is managed well and how various spatial analyses are executed efficiently. So it requires integrated spatial data model between geometry and topology and extended data model of topology for spatial analysis, in case network analysis and TIN analysis in open GIS component. In this paper, we design analysis component like network analysis component and TIN analysis component. To manage topological information for spatial analysis in open GIS component, we design extended data model of simple feature geometry for spatial analysis. In addition to, we design the overall system architecture of open GIS component contained this topology model for spatial analysis.

  • PDF

Business Innovation Through Spatial Data Analysis: A Multi-Case Analysis (공간 데이터 분석 기반의 비즈니스의 혁신: 해외 사례 분석을 중심으로)

  • Ham, YuKun
    • The Journal of Bigdata
    • /
    • v.4 no.1
    • /
    • pp.83-97
    • /
    • 2019
  • With sensor and communication technology development, spatial data related to business activities is exploding. Spatial data is now evolving into atypical data about space over three dimensions, away from two-dimensional geographic data. In addition to the Fourth Industrial Revolution, which connects the virtual space with the real space, there is a great opportunity for companies to utilize it. The analysis of recent overseas cases shows that it is possible to analyze customized services by understanding the situation of customers and objects located in the space, to manage risk, and furthermore to innovate business processes by analyzing spatial data. In the future, business innovation that combines spatial data from various sources and real-time analysis of relationships and situations between people and objects in space is expected to expand in all business fields.

  • PDF

A New Estimation Model for Wireless Sensor Networks Based on the Spatial-Temporal Correlation Analysis

  • Ren, Xiaojun;Sug, HyonTai;Lee, HoonJae
    • Journal of information and communication convergence engineering
    • /
    • v.13 no.2
    • /
    • pp.105-112
    • /
    • 2015
  • The estimation of missing sensor values is an important problem in sensor network applications, but the existing approaches have some limitations, such as the limitations of application scope and estimation accuracy. Therefore, in this paper, we propose a new estimation model based on a spatial-temporal correlation analysis (STCAM). STCAM can make full use of spatial and temporal correlations and can recognize whether the sensor parameters have a spatial correlation or a temporal correlation, and whether the missing sensor data are continuous. According to the recognition results, STCAM can choose one of the most suitable algorithms from among linear interpolation algorithm of temporal correlation analysis (TCA-LI), multiple regression algorithm of temporal correlation analysis (TCA-MR), spatial correlation analysis (SCA), spatial-temporal correlation analysis (STCA) to estimate the missing sensor data. STCAM was evaluated over Intel lab dataset and a traffic dataset, and the simulation experiment results show that STCAM has good estimation accuracy.