Computational Structural Engineering : An International Journal
/
제1권2호
/
pp.139-150
/
2001
An initial approach for the identification of physical causes underlying the spatial coherency of seismic ground motions it presented. The approach relies on the observation that amplitude and phase variability of seismic data recorded over extended areas around the amplitude and phase of a common, coherent component are correlated. It suffices then to examine the physical causes for the amplitude variability in the seismic motions, in order to recognize the causes for the phase variability and, consequently, the spatial coherency. In this study, the effect of randomness in the shear wave velocity at a site on the amplitude variability of the surface motions mi investigated by means of simulations. The amplitude variability of the simulated motions around the amplitude of the common component is contained within envelope functions, the shape of which suggests, on a preliminary basis, the trend of the decay of coherency with frequency.
In this study, the spatial variation mechanisms of large far-field earthquakes at engineering scales are first investigated with data from the 2008 Ms 8.0 Wenchuan earthquake. And a novel 'coherency cut-off frequency' is proposed to distinguish the spatial variations in ground motions in the low-frequency and high-frequency ranges. Then, a practical piecewise coherency model is developed to estimate and characterize the spatial variation in earthquake ground motions, including the effects of source-to-site distances, site conditions and neighboring topography on these variations. Four particular earthquake records from dense seismograph arrays are used to investigate values of the coherency cut-off frequency for different source-to-site distances. On the basis of this analysis, the model is established to simulate the spatial variations, whose parameters are suitable for both near- and far-field earthquake conditions. Simulations are conducted to validate the proposed model and method. The results show that compared to the existing models, the proposed model provides an effective method for simulating the spatial correlations of ground motions at local sites with known source-to-site distances.
지구통계학적인 공간분석의 대표적인 방법인 크리깅(kriging)을 적용하기 위해서는 두 관측점 사이의 거리에 기반한 상관성을 나타내는 공간상관함수의 추정이 우선적으로 이루어져야 한다. 본 연구에서는 다양한 크리깅에 적용할 수 있는 대표적인 상관함수인 semi-variogram, homeogram, covariance function에 대하여 국가지오이드 모델을 기반으로 추정하였다. 경위도 각각 2°의 대상지역 내 통합기준점의 지오이드고를 이용하였으며, 선형모델을 이용하여 공간적인 편향성을 제거하였다. 전체 100개의 샘플 포인트에 대해서 중복되지 않은 두 점 간의 거리를 기준으로 구간을 나누고, 각 함수에 대한 경험적인 값을 계산하였다. 공간상관함수의 경험적인 값은 각각 두 개의 모델에 최소제곱조정 방법으로 피팅한 결과 semi-variogram의 wave 모델 적합도가 가장 높았으며, homeogram과 covariance function은 exponential 모델이 상대적으로 좋은 피팅 결과를 보였다. 본 연구에서 결정한 공간상관함수는 추후 다양한 크리깅 방법을 통해 임의 지점에서의 예측값에 대한 정확도 검증과 이에 대한 평균제곱예측오차(Mean Squared Prediction Error, MSPE)를 계산함으로써 각 함수의 활용성에 대한 추가적인 연구가 수행되어야 한다.
Based on the discussion about some empirical coherency models resulted from earthquake-induced ground motion recordings at the SMART-1 array in Taiwan, and a heuristic model of the coherency function from elementary notions of stationary random process theory and a few simplifying assumptions regarding the propagation of seismic waves, a practical coherency model for spatially varying ground motions, which can be applied in aseismic analysis and design, is proposed, and the regressive coefficients are obtained using least-square fitting technique from the above recordings.
Spatial variability of ground motions has significant influence on dynamic response of longitudinal structures such as bridges and tunnels. The coherency function, which quantifies the degree of positive or negative correlation between two ground motions, is often used to describe the spatially variable ground motions. This paper compares two available procedures for developing spatially variable ground time histories from a given coherency function. Hao's method shows serious limitation, resulting in unrealistic decrease in coherency with increase in distance Abrahamason's method, on the other hand, preserves important characteristics of the reference ground motion. Therefore, the Abrahamason's method is recommended to be used in developing spatially varying ground motions.
The safety of a tunnel under seismic motion is most often evaluated by ovalling deformation of tunnel. This paper research about tunnel's longitudinal deformation. Because of spatial variation of seismic ground motion, the longitudinal structures like tunnel are likely to experience relative displacements along longitudinal direction. The spatially variable ground motion can be estimated by coherency function obtained empirically, and can be considered from different arrival times of ground motion. As a result of estimating tunnel's relative displacements at maximum curvature of tunnel, the displacements and curvatures estimated by coherency function affect the tunnel's safety more than different arrival times. However, if tunnel's displacements by coherency function superpose on displacements by different arrival times, the relative displacements and curvatures of tunnel will be more severe. Therefore, to estimate accurately tunnel's deformation in longitudinal direction has to consider both coherency and wave passage effects.
This paper studies the effects of spatially varying ground motions on the responses of a bridge frame located on a canyon site. Compared to the spatial ground motions on a uniform flat site, which is the usual assumptions in the analysis of spatial ground motion variation effects on structures, the spatial ground motions at different locations on surface of a canyon site have different intensities owing to local site amplifications, besides the loss of coherency and phase difference. In the proposed approach, the spatial ground motions are modelled in two steps. Firstly, the base rock motions are assumed to have the same intensity and are modelled with a filtered Tajimi-Kanai power spectral density function and an empirical spatial ground motion coherency loss function. Then, power spectral density function of ground motion on surface of the canyon site is derived by considering the site amplification effect based on the one dimensional seismic wave propagation theory. Dynamic, quasi-static and total responses of the model structure to various cases of spatially varying ground motions are estimated. For comparison, responses to uniform ground motion, to spatial ground motions without considering local site effects, to spatial ground motions without considering coherency loss or phase shift are also calculated. Discussions on the ground motion spatial variation and local soil site amplification effects on structural responses are made. In particular, the effects of neglecting the site amplifications in the analysis as adopted in most studies of spatial ground motion effect on structural responses are highlighted.
Derbal, Rachid;Benmansour, Nassima;Djafour, Mustapha;Matallah, Mohammed;Ivorra, Salvador
Earthquakes and Structures
/
제17권6호
/
pp.557-566
/
2019
The evaluation of the seismic hazard for a given site is to estimate the seismic ground motion at the surface. This is the result of the combination of the action of the seismic source, which generates seismic waves, the propagation of these waves between the source and the site, and site local conditions. The aim of this work is to evaluate the sensitivity of dynamic response of extended structures to spatial variable ground motions (SVGM). All factors of spatial variability of ground motion are considered, especially local site effect. In this paper, a method is presented to simulate spatially varying earthquake ground motions. The scheme for generating spatially varying ground motions is established for spatial locations on the ground surface with varying site conditions. In this proposed method, two steps are necessary. Firstly, the base rock motions are assumed to have the same intensity and are modelled with a filtered Tajimi-Kanai power spectral density function. An empirical coherency loss model is used to define spatial variable seismic ground motions at the base rock. In the second step, power spectral density function of ground motion on surface is derived by considering site amplification effect based on the one dimensional seismic wave propagation theory. Several dynamics analysis of a curved viaduct to various cases of spatially varying seismic ground motions are performed. For comparison, responses to uniform ground motion, to spatial ground motions without considering local site effect, to spatial ground motions with considering coherency loss, phase delay and local site effects are also calculated. The results showed that the generated seismic signals are strongly conditioned by the local site effect. In the same sense, the dynamic response of the viaduct is very sensitive of the variation of local geological conditions of the site. The effect of neglecting local site effect in dynamic analysis gives rise to a significant underestimation of the seismic demand of the structure.
Adanur, Suleyman;Altunisik, Ahmet C.;Soyluk, Kurtulus;Dumanoglu, A. Aydin
Steel and Composite Structures
/
제22권5호
/
pp.1001-1018
/
2016
The purpose of this paper is to compare the structural responses obtained from the stochastic analysis of a suspension bridge subjected to uniform and partially correlated seismic ground motions, using different spatial correlation functions commonly used in the earthquake engineering. The spatial correlation function employed in this study consists of a term that characterizes the loss of coherency. To account for the spatial variability of ground motions, the widely used four loss of coherency models in the literature has been taken into account in this study. Because each of these models has its own characteristics, it is intended to determine the sensitivity of a suspension bridge due to these losses of coherency models which represent the spatial variability of ground motions. Bosporus Suspension Bridge connects Europe to Asia in Istanbul is selected as a numerical example. The bridge has steel towers that are flexible, inclined hangers and a steel box-deck of 1074 m main span, with side spans of 231 and 255 m on the European and Asian sides, respectively. For the ground motion the filtered white noise model is considered and applied in the vertical direction, the intensity parameter of this model is obtained by using the S16E component of Pacoima Dam record of 1971 San Fernando earthquake. An analytically simple model called as filtered white noise ground motion model is chosen to represent the earthquake ground motion. When compared with the uniform ground motion case, the results obtained from the spatial variability models with partial correlation outline the necessity to include the spatial variability of ground motions in the stochastic dynamic analysis of suspension bridges. It is observed that while the largest response values are obtained for the model proposed by Harichandran and Vanmarcke, the model proposed by Uscinski produces the smallest responses among the considered partially correlated ground motion models. The response values obtained from the uniform ground motion case are usually smaller than those of the responses obtained from the partially correlated ground motion cases. While the response values at the flexible parts of the bridge are totally dominated by the dynamic component, the pseudo-static component also has significant contributions for the response values at the rigid parts of the bridge. The results also show the consistency of the spatial variability models, which have different characteristics, considered in this study.
물리탐사분야에서 탄성파 기술의 최종 목적은 지하매질의 공간적 특성을 규명하는데 있으며 이를 위해 전문해석가들은 영상화된 탄성파 자료로부터 이벤트들의 연속성을 검토하여 불연속적인 면을 해석하게 된다 본 논문에서는 지하구조 해석에 사용되는 3차원 탄성파 이미지로부터 불연속면을 자동으로 추출하는 기법을 소개하고 있다. 본 논문에서 소개된 방법은 세 단계를 통해 수행된다. 첫번째 단계는 3차원 자료로부터 이벤트의 연속성을 coherency cube형태로 계산하는 과정이며, 두번째 단계는 이러한 coherency cube 로부터 불면속면의 존재 가능성이 높은 지역을 3차원적인 형상의 이진영상(binary image)으로 표현하는 과정이다. 세번째 단계는 앞에서 얻어진 이진영상으로부터 불연속면의 위치 및 연장성에 대한 정보를 찾는 단계로서 앞에서 얻어진 이진 영상을 세선화 과정을 통해 3차원 평면형태의 불연속면을 결과물로 얻게된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.