• 제목/요약/키워드: spatial auto-regressive model

검색결과 7건 처리시간 0.024초

Spatio-temporal models for generating a map of high resolution NO2 level

  • Yoon, Sanghoo;Kim, Mingyu
    • Journal of the Korean Data and Information Science Society
    • /
    • 제27권3호
    • /
    • pp.803-814
    • /
    • 2016
  • Recent times have seen an exponential increase in the amount of spatial data, which is in many cases associated with temporal data. Recent advances in computer technology and computation of hierarchical Bayesian models have enabled to analyze complex spatio-temporal data. Our work aims at modeling data of daily average nitrogen dioxide (NO2) levels obtained from 25 air monitoring sites in Seoul between 2003 and 2010. We considered an independent Gaussian process model and an auto-regressive model and carried out estimation within a hierarchical Bayesian framework with Markov chain Monte Carlo techniques. A Gaussian predictive process approximation has shown the better prediction performance rather than a Hierarchical auto-regressive model for the illustrative NO2 concentration levels at any unmonitored location.

이변량 조건부자기회귀모형을이용한강력범죄자료분석 (Analysis of Violent Crime Count Data Based on Bivariate Conditional Auto-Regressive Model)

  • 최정순;박만식;원유복;김학열;허태영
    • Communications for Statistical Applications and Methods
    • /
    • 제17권3호
    • /
    • pp.413-421
    • /
    • 2010
  • 본 연구에서는 5대 범죄중 사람의 생명과 신체에 심각한 위해를 가하는 강력범죄인 살인과 강도 범죄의 이변량 가산자료에 대해 이변량조건부자기회귀모형을 사용하여 공간상관성을 반영한 강력범죄모형을 제안하였다. 범죄자료와 같은 가산자료에 대한 과대산포 검정을 위해 우도비 검정 실시하였으며, 그 결과 과대산포가 유의하지 않음에 따라 공간포아송모형을 이용하였다. 실증예제로 2007년 서울시에서 제공하는 25개 자치구별 강력범죄자료를 지리정보시스템을 이용하여 강력범죄 발생실태를 시각화하였으며 강력범죄에 영향을 주는 다양한 요인들에 대하여 분석을 실시하였다.

동영상에서의 확장된 시공간 적응적 Auto-regressive 모델의 연구 (Extended Adaptive Spatio-Temporal Auto-Regressive Model for Video Sequence)

  • 두석주;강문기
    • 전자공학회논문지S
    • /
    • 제36S권11호
    • /
    • pp.54-59
    • /
    • 1999
  • 본 논문에서는 보다 정확한 선형예측을 위해 시공간적응적 기반영역에 바탕을 둔 확장된 auto regressive(AR) 모델을 제안한다. 기존의 AR 모델에서 영상 전체에 걸쳐 사용되는 직사각형 형태의 기반영역은 영상의 경계선 영역에서는 더 이상 정상상태(stationarity)의 조건을 만족시키지 않음으로써 경계선 영역에서 예측오차가 증가하는 결점을 갖는다. 그래서 제안된 방법은 AR 모델에서 시공간적응적 기반영역이라 불리는 정상상태의 기반영역을 구성하는데 중점을 둔다. 시공간적응적 기반영역은 영상의 경계선 특성과 관련되는 공간적응적 기반영역과 시간축의 불연속 개념과 관련되는 시간적응적 기반영역으로 구성되어진다. 제안된 AR 모델은 동영상 복원 실험간 좀 더 정확한 모델 파라미터를 산출하였을 뿐만 아니라 복잡한 계산과정을 단순화하는 이점을 가진다.

  • PDF

후향계단 유동장 저차 모델링을 위한 ARX 설계 기법 (ARX Design Technique for Low Order Modeling of Backward-Facing-Step Flow Field)

  • 이진익;이은석
    • 한국항공우주학회지
    • /
    • 제40권10호
    • /
    • pp.840-845
    • /
    • 2012
  • 본 논문에서는 후향계단(Backward Facing Step) 유동장의 유동운동에 대한 ARX(Auto Regressive eXogenous) 모델링 기법을 제시한다. BFS 유동장 모델링을 위해 밀도를 모드분석을 통해 고유 공간모드와 시간계수를 추출한다. 입력 차수와 상태변수 차수는 각각 유동장 스팩트럼 분석과 시간계수 분석을 통해 결정한다. 또한, 유동장의 속도 분석을 통해 ARX의 입력 지연 차수를 결정한다. 한편, ARX 모델의 계수는 신경망을 이용하여 설계한다.

Interval prediction on the sum of binary random variables indexed by a graph

  • Park, Seongoh;Hahn, Kyu S.;Lim, Johan;Son, Won
    • Communications for Statistical Applications and Methods
    • /
    • 제26권3호
    • /
    • pp.261-272
    • /
    • 2019
  • In this paper, we propose a procedure to build a prediction interval of the sum of dependent binary random variables over a graph to account for the dependence among binary variables. Our main interest is to find a prediction interval of the weighted sum of dependent binary random variables indexed by a graph. This problem is motivated by the prediction problem of various elections including Korean National Assembly and US presidential election. Traditional and popular approaches to construct the prediction interval of the seats won by major parties are normal approximation by the CLT and Monte Carlo method by generating many independent Bernoulli random variables assuming that those binary random variables are independent and the success probabilities are known constants. However, in practice, the survey results (also the exit polls) on the election are random and hardly independent to each other. They are more often spatially correlated random variables. To take this into account, we suggest a spatial auto-regressive (AR) model for the surveyed success probabilities, and propose a residual based bootstrap procedure to construct the prediction interval of the sum of the binary outcomes. Finally, we apply the procedure to building the prediction intervals of the number of legislative seats won by each party from the exit poll data in the $19^{th}$ and $20^{th}$ Korea National Assembly elections.

공간 패널 회귀모형을 이용한 양파 생산량 추정 (Onion yield estimation using spatial panel regression model)

  • 최성천;백장선
    • 응용통계연구
    • /
    • 제29권5호
    • /
    • pp.873-885
    • /
    • 2016
  • 노지에서 재배되는 양파 생산량은 기후환경에 의하여 영향을 받으며, 특정 지역에서 많이 생산되는 지역적인 특성을 가지고 있다. 따라서 생산량 예측시 기상과 지역을 동시에 고려하는 접근이 필요하다. 본 논문에서는 공간 패널 회귀모형을 이용하여 기상변화에 따른 생산량을 추정하였다. 양파 주산지 13곳에 대한 2006년부터 2015년까지의 기상 패널자료를 사용하여, 공간시차를 반영한 공간자기회귀(spatial autoregressive)모형을 사용하였다. 공간가중치 행렬은 임계치 설정방법과 최근거리 설정방법으로 나누어 분석하여, 최근 3곳까지 거리 설정방법을 사용한 모형이 최종 모형으로 선택되었으며, 자기상관성이 유의함을 보였다. 하우스만 검정을 통해 채택된 확률효과모형으로 분석한 결과 누적일조시간(1월), 평균상대습도(4월), 평균최저기온(6월), 누적강수량(11월) 등이 양파 생산량 예측에 유의한 변수로 나타났다.

공간통계모형을 이용한 도로 소음과 도시 구성 요소의 관계 연구 (The Spatial Statistical Relationships between Road-traffic Noise and Urban Components Including Population, Building, Road-traffic and Land-use)

  • 류훈재;박인권;장서일;전범석
    • 한국소음진동공학회논문집
    • /
    • 제24권4호
    • /
    • pp.348-356
    • /
    • 2014
  • To understand the relationship between road-traffic noise and urban components such as population, building, road-traffic and land-use, the city of Cheongju that already has road-traffic noise maps of daytime and nighttime was selected for this study. The whole area of the city is divided into square cells of a uniform size and for each cell, the urban components are estimated. A spatial representative noise level for each cell is determined by averaging out population-weighted facade noise levels for noise exposure population within the cell during nighttime. The relationship between the representative noise level and the urban components is statistically modeled at the cell level. Specially, we introduce a spatial auto regressive model and a spatial error model that turns out to explain above 85 % of the noise level. These findings and modeling methods can be used as a preliminary tool for environmental planning and urban design in modern cities in consideration of noise exposure.