• Title/Summary/Keyword: spatial/temporal resolution

Search Result 425, Processing Time 0.025 seconds

An Implementation of Change Detection System for High-resolution Satellite Imagery using a Floating Window

  • Lim, Young-Jae;Jeong, Soo;Kim, Kyung-Ok
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.275-279
    • /
    • 2002
  • Change Detection is a useful technology that can be applied to various fields, taking temporal change information with the comparison and analysis among multi-temporal satellite images. Especially, Change Detection that utilizes high-resolution satellite imagery can be implemented to extract useful change information for many purposes, such as the environmental inspection, the circumstantial analysis of disaster damage, the inspection of illegal building, and the military use, which cannot be achieved by low- or middle-resolution satellite imagery. However, because of the special characteristics that result from high-resolution satellite imagery, it cannot use a pixel-based method that is used for low-resolution satellite imagery. Therefore, it must be used a feature-based algorithm based on the geographical and morphological feature. This paper presents the system that builds the change map by digitizing the boundary of the changed object. In this system, we can make the change map using manual or semi-automatic digitizing through the user interface implemented with a floating window that enables to detect the sign of the change, such as the construction or dismantlement, more efficiently.

  • PDF

THE STUDY OF SPATIAL AND TEMPORAL VARIABILITY OF THE KUROSHIO EXTENSION USING REMOTE SENSING DATA WITH APPLICATION OF DATA-FUSION METHODS

  • Kim Woo-Jin;Park Gil- Yong;Lim Se-Han;OH Im-Sang
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.434-436
    • /
    • 2005
  • Analysis method using remote sensing data is one of the effective ways to research a spatial and temporal variability of the mesoscale oceanic motions. During past several decades, many researchers have been getting comprehensive results using remote sensing data with application of data fusion methods in many parts of geo-science. For this study, we took the integration and fusion of several remote sensing data, which are different data resolution, timescale and characteristics, for improving accurate analysis of variation of the Kuroshio Extension. Furthermore, we might get advanced ways to understand the variability of the Kuroshio Extension, has close relation to the spatial and temporal variation of the Kuroshio and Oyashio Current.

  • PDF

The Value of Comparison with Four Dimension Time Resolved Imaging of Contrast Kinetics(TRICKS) MRA by Time of Flight(TOF) MRA (4차원 TRICKS 자기공명혈관조영술과 기존 TOF 자기공명혈관조영술의 비교 및 유용성)

  • Bae, Sung-Jin;Lim, Cheong-Hwan;Park, Byung-Rae;Shin, Woon-Jae;Kim, Jung-Sam
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.3
    • /
    • pp.215-221
    • /
    • 2010
  • To assess the clinical value of time resolved imaging of contrast kinetics(TRICKS) MRA by comparison with conventional time of flight(TOF) MR angiography. Both TOF-MRA and TRICKS-MRA were performed in 17 patients with cerebrovascular disease and in 6 patients with brain tumor. Among 17 cerebraovascular patients, digital subtraction angiography(DSA) data were also obtained in 11 patients. TOF-MRA showed good spatial resolution but short in temporal resolution. Although TRICKS-MRA showed somewhat low spatial resolution, it showed superior temporal resolution by distinguishing vessel and tumor in all patients. Also, from the analysis of vessel-tumor relationship, TRICKS-MRA showed better performance than TOF-MRA. TRICKS-MRA makes it possible to image arterial, capillary and venous phase sequentially with very speedy manner and therefore, the clinical use of this method is highly suggestive for future use.

Urban Spatial Analysis using Multi-temporal KOMPSAT-1 EOC Imagery

  • Kim Youn-Soo;Jeun Gab-Ho;Lee Kwang-Jae;Kim Byung-Kyo
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.515-517
    • /
    • 2004
  • Although sustainable development of a city should in theory be based on updated spatial information like land cover/use changes, in practice there are no effective tools to get such information. However the development of satellite and sensor technologies has increased the supply of high resolution satellite data, allowing cost-effective, multi-temporal monitoring. Especially KOMPSAT-1(KOrea Multi-Purpose SATellite) acquired a large number of images of the whole Korean peninsula and covering some large cities a number of times. In this study land-use patterns and trends of Daejeon from the year 2000 to the year 2003 will be considered using land use maps which are generated by manual interpretation of multi-temporal KOMPSAT EOC imagery and to show the possibility of using high resolution satellite remote sensing data for urban analysis.

  • PDF

Interferometric coherence analysis using space-borne synthetic aperture radar with respect to spatial resolution (공간해상도에 따른 위성 영상레이더 위상간섭기법 긴밀도 분석)

  • Hong, Sang-Hoon;Wdowinski, Shimon
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.4
    • /
    • pp.389-397
    • /
    • 2013
  • Recently high spatial resolution space-borne Synthetic Aperture Radar (SAR) systems have launched and have been operated successfully. Interferometric SAR (InSAR) processing with the space-based high resolution observations acquired by these systems can provide more detail information for various geodetic applications. Coherence is regarded as a critical parameter in the evaluating the quality of an InSAR pair. In this study, we evaluate the coherence characteristics of high-resolution data acquired by TerraSAR-X (X-band) and ALOS PALSAR (L-band) and intermediate-resolution data acquired by Envisat ASAR (C-band) over western Texas, U.S.A. Our coherence analysis reveals that the high-resolution X-band TSX (3.1 cm) data has a high coherence level (0.3-0.6), similar to that of the L-band ALOS PALSAR data (23.5 cm) in short temporal baselines. Further more, the TSX coherence values are significantly higher than those of the C-band (5.6 cm) Envisat ASAR data. The higher coherence of the TSX dataset is a surprising result, because common scattering theories suggest that the longer wavelength SAR data maintain better coherence. In vegetated areas the shorter wavelength radar pulse interacts mostly with upper sections of the vegetation and, hence, does not provide good correlation over time in InSAR pairs. Thus, we suggest that the higher coherence values of the TSX data reflect the data's high-resolution, in which stable and coherent scatters are better maintained. Although, however, the TSX data show a very good coherence with short temporal baseline (11-33 days), the coherences are significantly degraded as the temporal baselines are increased. This result confirms previous studies showing that the coherence has a strong dependency on the temporal baseline.

Spatial Downscaling of MODIS Land Surface Temperature: Recent Research Trends, Challenges, and Future Directions

  • Yoo, Cheolhee;Im, Jungho;Park, Sumin;Cho, Dongjin
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.4
    • /
    • pp.609-626
    • /
    • 2020
  • Satellite-based land surface temperature (LST) has been used as one of the major parameters in various climate and environmental models. Especially, Moderate Resolution Imaging Spectroradiometer (MODIS) LST is the most widely used satellite-based LST product due to its spatiotemporal coverage (1 km spatial and sub-daily temporal resolutions) and longevity (> 20 years). However, there is an increasing demand for LST products with finer spatial resolution (e.g., 10-250 m) over regions such as urban areas. Therefore, various methods have been proposed to produce high-resolution MODIS-like LST less than 250 m (e.g., 100 m). The purpose of this review is to provide a comprehensive overview of recent research trends and challenges for the downscaling of MODIS LST. Based on the recent literature survey for the past decade, the downscaling techniques classified into three groups-kernel-driven, fusion-based, and the combination of kernel-driven and fusion-based methods-were reviewed with their pros and cons. Then, five open issues and challenges were discussed: uncertainty in LST retrievals, low thermal contrast, the nonlinearity of LST temporal change, cloud contamination, and model generalization. Future research directions of LST downscaling were finally provided.

Estimation of Winter Wheat Sown Area Using Temporal Characteristics of NDVI

  • Uchida, S.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.231-233
    • /
    • 2003
  • Agricultural land use generally shows specific temporal characteristics of NDVI obtained from satellite data. In terms of winter wheat, a higher value compared with other land use types in May and a considerably low value in June could be discriminative features of temporal change of NDVI. In this study, the author examined methods for estimating winter wheat sown area in sub-pixel level of coarse resolution satellite data using temporal characteristics of NDVI. Application of the methods to the major grain production area in China exhibited properly a spatial distribution pattern of winter wheat sown area.

  • PDF

Assessment of the Ochang Plain NDVI using Improved Resolution Method from MODIS Images (MODIS영상의 고해상도화 수법을 이용한 오창평야 NDVI의 평가)

  • Park, Jong-Hwa;La, Sang-Il
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.9 no.6
    • /
    • pp.1-12
    • /
    • 2006
  • Remote sensing cannot provide a direct measurement of vegetation index (VI) but it can provide a reasonably good estimate of vegetation index, defined as the ratio of satellite bands. The monitoring of vegetation in nearby urban regions is made difficult by the low spatial resolution and temporal resolution image captures. In this study, enhancing spatial resolution method is adapted as to improve a low spatial resolution. Recent studies have successfully estimated normalized difference vegetation index (NDVI) using improved resolution method such as from the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard EOS Terra satellite. Image enhancing spatial resolution is an important tool in remote sensing, as many Earth observation satellites provide both high-resolution and low-resolution multi-spectral images. Examples of enhancement of a MODIS multi-spectral image and a MODIS NDVI image of Cheongju using a Landsat TM high-resolution multi-spectral image are presented. The results are compared with that of the IHS technique is presented for enhancing spatial resolution of multi-spectral bands using a higher resolution data set. To provide a continuous monitoring capability for NDVI, in situ measurements of NDVI from paddy field was carried out in 2004 for comparison with remotely sensed MODIS data. We compare and discuss NDVI estimates from MODIS sensors and in-situ spectroradiometer data over Ochang plain region. These results indicate that the MODIS NDVI is underestimated by approximately 50%.

Spatial and Temporal Resolution Selection for Bit Stream Extraction in H.264 Scalable Video Coding (H.264 SVC에서 비트 스트림 추출을 위한 공간과 시간 해상도 선택 기법)

  • Kim, Nam-Yun;Hwang, Ho-Young
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.1
    • /
    • pp.102-110
    • /
    • 2010
  • H.264 SVC(Scalable Video Coding) provides the advantages of low disk storage requirement and high scalability. However, a streaming server or a user terminal has to extract a bit stream from SVC file. This paper proposes a bit stream extraction method which can get the maximum PSNR value while date bit rate does not exceed the available network bandwidth. To do this, this paper obtains the information about extraction points which can get the maximum PSNR value offline and decides the spatial/temporal resolution of a bit stream at run-time. This resolution information along with available network bandwidth is used as the parameters to a bit stream extractor. Through experiment with JSVM reference software, we proved that proposed bit stream extraction method can get a higher PSNR value.

Downscaling of MODIS Land Surface Temperature to LANDSAT Scale Using Multi-layer Perceptron

  • Choe, Yu-Jeong;Yom, Jae-Hong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.4
    • /
    • pp.313-318
    • /
    • 2017
  • Land surface temperature is essential for monitoring abnormal climate phenomena such as UHI (Urban Heat Islands), and for modeling weather patterns. However, the quality of surface temperature obtained from the optical space imagery is affected by many factors such as, revisit period of the satellite, instance of capture, spatial resolution, and cloud coverage. Landsat 8 imagery, often used to obtain surface temperatures, has a high resolution of 30 meters (100 meters rearranged to 30 meters) and a revisit frequency of 16 days. On the contrary, MODIS imagery can be acquired daily with a spatial resolution of about 1 kilometer. Many past attempts have been made using both Landsat and MODIS imagery to complement each other to produce an imagery of improved temporal and spatial resolution. This paper applied machine learning methods and performed downscaling which can obtain daily based land surface temperature imagery of 30 meters.