• 제목/요약/키워드: sparse projection

검색결과 24건 처리시간 0.025초

Sparse-View CT Image Recovery Using Two-Step Iterative Shrinkage-Thresholding Algorithm

  • Chae, Byung Gyu;Lee, Sooyeul
    • ETRI Journal
    • /
    • 제37권6호
    • /
    • pp.1251-1258
    • /
    • 2015
  • We investigate an image recovery method for sparse-view computed tomography (CT) using an iterative shrinkage algorithm based on a second-order approach. The two-step iterative shrinkage-thresholding (TwIST) algorithm including a total variation regularization technique is elucidated to be more robust than other first-order methods; it enables a perfect restoration of an original image even if given only a few projection views of a parallel-beam geometry. We find that the incoherency of a projection system matrix in CT geometry sufficiently satisfies the exact reconstruction principle even when the matrix itself has a large condition number. Image reconstruction from fan-beam CT can be well carried out, but the retrieval performance is very low when compared to a parallel-beam geometry. This is considered to be due to the matrix complexity of the projection geometry. We also evaluate the image retrieval performance of the TwIST algorithm -sing measured projection data.

희소 투영행렬 획득을 위한 RSR 개선 방법론 (An Improved RSR Method to Obtain the Sparse Projection Matrix)

  • 안정호
    • 디지털콘텐츠학회 논문지
    • /
    • 제16권4호
    • /
    • pp.605-613
    • /
    • 2015
  • 본 논문은 패턴인식에서 자주 사용되는 투영행렬을 희소화하는 문제를 다룬다. 최근 임베디드 시스템이 널리 사용됨에 따라 탑재되는 프로그램의 용량이 제한받는 경우가 빈번히 발생한다. 개발된 프로그램은 상수 데이터를 포함하는 경우가 많다. 예를 들어, 얼굴인식과 같은 패턴인식 프로그램의 경우 고차원 벡터를 저차원 벡터로 차원을 축소하는 투영행렬을 사용하는 경우가 많다. 인식성능 향상을 위해 영상으로부터 매우 높은 차원의 고차원 특징벡터를 추출하는 경우 투영행렬의 사이즈는 매우 크다. 최근 라소 회귀분석 방법을 이용한 RSR(rotated sparse regression) 방법론[1]이 제안되었다. 이 방법론은 여러 실험을 통해 희소행렬을 구하는 가장 우수한 알고리즘 중 하나로 평가받고 있다. 우리는 본 논문에서 RSR을 개선할 수 있는 세 가지 방법론을 제안한다. 즉, 학습데이터에서 이상치를 제거하여 일반화 성능을 높이는 방법, 학습데이터를 랜덤 샘플링하여 희소율을 높이는 방법, RSR의 목적함수에 엘라스틱 넷 회귀분석의 패널티 항을 사용한 E-RSR(elastic net-RSR) 방법을 제안한다. 우리는 실험을 통해 제안한 방법론이 인식률을 희생하지 않으며 희소율을 크게 증가시킴으로써 기존 RSR 방법론을 개선할 수 있음을 보였다.

Sparse view CT에서 inpainting 방법을 이용한 사이노그램 복원의 영상 재구성 (Image Reconstruction of Sinogram Restoration using Inpainting method in Sparse View CT)

  • 김대홍;백철하
    • 한국방사선학회논문지
    • /
    • 제11권7호
    • /
    • pp.655-661
    • /
    • 2017
  • 방사선 치료 전 환자 위치 확인을 위해 수행하는 콘빔 CT 촬영에서 환자 선량 감소를 위해 Sparse view CT가 사용되고 있다. 본 연구는 시뮬레이션과 실험을 통해 선형보간법과 inpainting 방법을 이용하여 사이노그램의 sparse 데이터 복원하고 평가하는 것이다. 사이노그램 복원은 여러 간격의 각도로 획득된 영상에 적용되었다. 복원된 사이노그램은 역투영재구성법으로 재구성되었고, 그 결과를 평균제곱근오차와 영상의 프로파일로 나타내었다. 결과에 따르면, 평균제곱근오차와 영상 프로파일은 투영 각도와 복원법에 의존하였다. 시뮬레이션과 실험 결과에서 inpainting 복원법은 선형보간법에 비해 사이노그램의 복원 측면에서 개선된 결과를 보여주었다. 따라서, inpainting 방법은 환자 선량을 감소시키면서 영상화질을 유지시키는데 기여할 수 있을 것이다.

MOSUM 성근 프로젝션을 이용한 고차원 시계열의 변화점 추정 (High-dimensional change point detection using MOSUM-based sparse projection)

  • 김문정;백창룡
    • 응용통계연구
    • /
    • 제35권1호
    • /
    • pp.63-75
    • /
    • 2022
  • 본 논문은 Wang과 Samworth (2018)가 제안한 성근 프로젝션 방법을 개선하여 MOSUM을 이용하여 고차원의 시계열데이터에 존재하는 다중 평균 변화점을 추정하는 방법에 대해서 제안한다. 제안한 방법은 국소방법으로 다중 변화점을 동시에 찾을 수 있어 순차적 오류를 최소화 할 뿐만 아니라 평균이 상쇄되는 경우에도 변화점을 추정하는 장점을 지니고 있다. 또한 데이터 의존적인 방법으로 블록 와일드 붓스트랩 방법을 활용하여 임계점을 찾는 방법을 제안한다. 모의 실험을 통해 제안한 방법이 좋은 성능을 보임을 확인하였으며 S&P 500 지수를 구성하는 개별 기업들의 금융 자료에 적용하여 최근 6년간 네 번의 변화점을 찾았다.

Sparse decision feedback equalization for underwater acoustic channel based on minimum symbol error rate

  • Wang, Zhenzhong;Chen, Fangjiong;Yu, Hua;Shan, Zhilong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제13권1호
    • /
    • pp.617-627
    • /
    • 2021
  • Underwater Acoustic Channels (UAC) have inherent sparse characteristics. The traditional adaptive equalization techniques do not utilize this feature to improve the performance. In this paper we consider the Variable Adaptive Subgradient Projection (V-ASPM) method to derive a new sparse equalization algorithm based on the Minimum Symbol Error Rate (MSER) criterion. Compared with the original MSER algorithm, our proposed scheme adds sparse matrix to the iterative formula, which can assign independent step-sizes to the equalizer taps. How to obtain such proper sparse matrix is also analyzed. On this basis, the selection scheme of the sparse matrix is obtained by combining the variable step-sizes and equalizer sparsity measure. We call the new algorithm Sparse-Control Proportional-MSER (SC-PMSER) equalizer. Finally, the proposed SC-PMSER equalizer is embedded into a turbo receiver, which perform turbo decoding, Digital Phase-Locked Loop (DPLL), time-reversal receiving and multi-reception diversity. Simulation and real-field experimental results show that the proposed algorithm has better performance in convergence speed and Bit Error Rate (BER).

Exterior 투영데이터를 이용한 Region-of-Interest CT의 반복적 영상재구성 방법 (An Iterative Image Reconstruction Method for the Region-of-Interest CT Assisted from Exterior Projection Data)

  • 진승오;권오경
    • 대한의용생체공학회:의공학회지
    • /
    • 제35권5호
    • /
    • pp.132-141
    • /
    • 2014
  • In an ordinary CT scan, a large number of projections with full field-of-view (FFOV) are necessary to reconstruct high resolution images. However, excessive x-ray dosage is a great concern in FFOV scan. Region-of-interest (ROI) CT or sparse-view CT is considered to be a solution to reduce x-ray dosage in CT scanning, but it suffers from bright-band artifacts or streak artifacts giving contrast anomaly in the reconstructed image. In this study, we propose an image reconstruction method to eliminate the bright-band artifacts and the streak artifacts simultaneously. In addition to the ROI scan for the interior projection data with relatively high sampling rate in the view direction, we get sparse-view exterior projection data with much lower sampling rate. Then, we reconstruct images by solving a constrained total variation (TV) minimization problem for the interior projection data, which is assisted by the exterior projection data in the compressed sensing (CS) framework. For the interior image reconstruction assisted by the exterior projection data, we implemented the proposed method which enforces dual data fidelity terms and a TV term. The proposed method has effectively suppressed the bright-band artifacts around the ROI boundary and the streak artifacts in the ROI image. We expect the proposed method can be used for low-dose CT scans based on limited x-ray exposure to a small ROI in the human body.

Truncated Kernel Projection Machine for Link Prediction

  • Huang, Liang;Li, Ruixuan;Chen, Hong
    • Journal of Computing Science and Engineering
    • /
    • 제10권2호
    • /
    • pp.58-67
    • /
    • 2016
  • With the large amount of complex network data that is increasingly available on the Web, link prediction has become a popular data-mining research field. The focus of this paper is on a link-prediction task that can be formulated as a binary classification problem in complex networks. To solve this link-prediction problem, a sparse-classification algorithm called "Truncated Kernel Projection Machine" that is based on empirical-feature selection is proposed. The proposed algorithm is a novel way to achieve a realization of sparse empirical-feature-based learning that is different from those of the regularized kernel-projection machines. The algorithm is more appealing than those of the previous outstanding learning machines since it can be computed efficiently, and it is also implemented easily and stably during the link-prediction task. The algorithm is applied here for link-prediction tasks in different complex networks, and an investigation of several classification algorithms was performed for comparison. The experimental results show that the proposed algorithm outperformed the compared algorithms in several key indices with a smaller number of test errors and greater stability.

자동조절자 내부점 방법을 위한 선형방정식 해법 (Computational Experience of Linear Equation Solvers for Self-Regular Interior-Point Methods)

  • 설동렬
    • 경영과학
    • /
    • 제21권2호
    • /
    • pp.43-60
    • /
    • 2004
  • Every iteration of interior-point methods of large scale optimization requires computing at least one orthogonal projection. In the practice, symmetric variants of the Gaussian elimination such as Cholesky factorization are accepted as the most efficient and sufficiently stable method. In this paper several specific implementation issues of the symmetric factorization that can be applied for solving such equations are discussed. The code called McSML being the result of this work is shown to produce comparably sparse factors as another implementations in the $MATLAB^{***}$ environment. It has been used for computing projections in an efficient implementation of self-regular based interior-point methods, McIPM. Although primary aim of developing McSML was to embed it into an interior-point methods optimizer, the code may equally well be used to solve general large sparse systems arising in different applications.

A Noisy Videos Background Subtraction Algorithm Based on Dictionary Learning

  • Xiao, Huaxin;Liu, Yu;Tan, Shuren;Duan, Jiang;Zhang, Maojun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권6호
    • /
    • pp.1946-1963
    • /
    • 2014
  • Most background subtraction methods focus on dynamic and complex scenes without considering robustness against noise. This paper proposes a background subtraction algorithm based on dictionary learning and sparse coding for handling low light conditions. The proposed method formulates background modeling as the linear and sparse combination of atoms in the dictionary. The background subtraction is considered as the difference between sparse representations of the current frame and the background model. Assuming that the projection of the noise over the dictionary is irregular and random guarantees the adaptability of the approach in large noisy scenes. Experimental results divided in simulated large noise and realistic low light conditions show the promising robustness of the proposed approach compared with other competing methods.

AN ITERATIVE ALGORITHM FOR THE LEAST SQUARES SOLUTIONS OF MATRIX EQUATIONS OVER SYMMETRIC ARROWHEAD MATRICES

  • Ali Beik, Fatemeh Panjeh;Salkuyeh, Davod Khojasteh
    • 대한수학회지
    • /
    • 제52권2호
    • /
    • pp.349-372
    • /
    • 2015
  • This paper concerns with exploiting an oblique projection technique to solve a general class of large and sparse least squares problem over symmetric arrowhead matrices. As a matter of fact, we develop the conjugate gradient least squares (CGLS) algorithm to obtain the minimum norm symmetric arrowhead least squares solution of the general coupled matrix equations. Furthermore, an approach is offered for computing the optimal approximate symmetric arrowhead solution of the mentioned least squares problem corresponding to a given arbitrary matrix group. In addition, the minimization property of the proposed algorithm is established by utilizing the feature of approximate solutions derived by the projection method. Finally, some numerical experiments are examined which reveal the applicability and feasibility of the handled algorithm.