• Title/Summary/Keyword: spark plasma sintering process

Search Result 182, Processing Time 0.02 seconds

Computer aided simulation of spark plasma sintering process (Part 1 : formulation) (스파크 플라즈마 소결공정의 전산모사(1부 : 수식화))

  • Keum Y.T.;Jean J.H.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.1
    • /
    • pp.38-42
    • /
    • 2006
  • Spark plasma sintering processes have been rapidly introduced recently to improve the quality and productivity of ceramic products and to solve the problem of environmental pollutions. Sintering temperatures and pressing pressures in the spark plasma sintering process are known to be the important factors highly affecting the quality of the ceramics. In this research, in order to see the effects of sintering temperatures and pressing pressures on the grain growth during the spark plasma sintering process of $Al_2O_3$ the grain growth processes associated with sintering temperatures and pressing pressures are simulated by the Monte Carlo method (MCM) and the finite element method (FEM). In this Part 1, the formulations for the simulation, which is the theoretical background of Part 2, are introduced.

Consolidation Behavior of Ti-6Al-4V Powder by Spark Plasma Sintering (Spark plasma sintering에 의한 Ti-6Al-4V 합금분말의 성형성)

  • Kim, J.H.;Lee, J.K.;Kim, T.S.
    • Journal of Powder Materials
    • /
    • v.14 no.1 s.60
    • /
    • pp.32-37
    • /
    • 2007
  • Using spark plasma sintering process (SPS), Ti-6Al-4V alloy powders were successfully consolidated without any contamination happened due to reaction between the alloy powders and graphite mold. Variation of microstructure and mechanical properties were investigated as a function of SPS temperature and time. Compared with hot isostatic pressing (HIP), the sintering time and temperature could be lowered to be 10 min. and $900^{\circ}C$, respectively. At the SPS condition, UTS and elongation were about 890 MPa and 24%, respectively. Considering the density of 98.5% and elongation of 24%, further improving the tensile strength would obtain by increasing the SPS pressure.

Production and Properties of Amorphous TiCuNi Powders by Mechanical Alloying and Spark Plasma Sintering

  • Kim, J.C.;Kang, E.H.;Kwon, Y.S.;Kim, J.S.;Chang, Si-Young
    • Journal of Powder Materials
    • /
    • v.17 no.1
    • /
    • pp.36-43
    • /
    • 2010
  • In present work, amorphous TiCuNi powders were fabricated by mechanical alloying process. Amorphization and crystallization behaviors of the TiCuNi powders during high-energy ball milling and subsequent microstructure changes were studied by X-ray diffraction and transmission electron microscope. TEM samples were prepared by the focused ion beam technique. The morphology of powders prepared with different milling times was observed by field-emission scanning electron microscope and optical microscope. The powders developed a fine, layered, homogeneous structure with milling times. The crystallization behavior showed that glass transition, $T_g$, onset crystallization, $T_x$, and super cooled liquid range ${\Delta}T=T_x-T_g$ were 628, 755 and 127K, respectively. The as-prepared amorphous TiCuNi powders were consolidated by spark plasma sintering process. Full densified TiCuNi samples were successfully produced by the spark plasma sintering process. Crystallization of the MA powders happened during sintering at 733K.

Synthesis of Al-Ni-Co-Y Bulk Metallic Glass fabricated by Spark Plasma Sintering (방전 플라즈마 소결법을 이용한 Al-Ni-Co-Y 벌크 비정질 합금의 제조)

  • Jeong Pyo Lee;Jin Kyu Lee
    • Journal of Powder Materials
    • /
    • v.30 no.1
    • /
    • pp.41-46
    • /
    • 2023
  • In this study, an Al82Ni7Co3Y8 (at%) bulk metallic glass is fabricated using gas-atomized Al82Ni7Co3Y8 metallic glass powder and subsequent spark plasma sintering (SPS). The effect of powder size on the consolidation of bulk metallic glass is considered by dividing it into 5 ㎛ or less and 20-45 ㎛. The sintered Al82Ni7Co3Y8 bulk metallic glasses exhibit crystallization behavior and crystallization enthalpy similar to those of the Al82Ni7Co3Y8 powder with 5 ㎛ or less and it is confirmed that no crystallization occurred during the sintering process. From these results, we conclude that the Z-position-controlled spark plasma sintering process, using superplastic deformation by viscous flow in the supercooled liquid-phase region of amorphous powder, is an effective process for manufacturing bulk metallic glass.

Evaluation of Ni-YSZ Anode fabricated by Spark Plasma Sintering for SOFC Application (방전플라즈마 소결공법에 의해 제작된 SOFC용 Ni-YSZ Anode의 특성평가)

  • Chang, Se-Hun;Choi, Jung-Chul;Choi, Se-Weon;Kim, Ho-Sung;Oh, Ik-Hyun
    • Journal of Powder Materials
    • /
    • v.15 no.5
    • /
    • pp.405-410
    • /
    • 2008
  • SOFC (Solid Oxide Fuel Cell) Ni-YSZ anode was fabricated by the spark plasma sintering (SPS) process and its microstructure and electrical properties were investigated in this study. The spark plasma sintering process was carried out at $800{\sim}1000^{\circ}C$ for holding time of 5 min under 40 MPa. To fabricate Ni-YSZ anode, the SPS processed specimens were reduced at $800^{\circ}C$ under $H_2$ atmosphere. The reduced specimens showed relative density of $48.4{\sim}64.8%$ according to sintering temperature. And also, the electrical conductivity of reduced specimens after sintering at 900 and $1000^{\circ}C$ showed $480{\sim}600$ (S/cm) values at the measuring range of $600{\sim}900^{\circ}C$.

Spark Plasma Sintering Behaviors of M-type Barium Hexaferrite Nano Powders

  • Jung, Im Doo;Kim, Youngmoo;Hong, Yang-Ki;Park, Seong Jin
    • Journal of Powder Materials
    • /
    • v.21 no.4
    • /
    • pp.256-259
    • /
    • 2014
  • A magnetic powder, M-type barium hexaferrite (BaFe12O19), was consolidated with the spark plasma sintering process. Three different holding temperatures, $850^{\circ}C$, $875^{\circ}C$ and $900^{\circ}C$ were applied to the spark plasma sintering process with the same holding times, heating rates and compaction pressure of 30 MPa. The relative density was measured simultaneously with spark plasma sintering and the convergent relative density after cooling was found to be proportional to the holding temperature. The full relative density was obtained at $900^{\circ}C$ and the total sintering time was only 33.3 min, which was much less than the conventional furnace sintering method. The higher holding temperature also led to the higher saturation magnetic moment (${\sigma}_s$) and the higher coercivity ($H_c$) in the vibrating sample magnetometer measurement. The saturation magnetic moment (${\sigma}_s$) and the coercivity ($H_c$) obtained at $900^{\circ}C$ were 56.3 emu/g and 541.5 Oe for each.

Consolidation Behavior of Gas Atomized Mg-Zn-Y Alloy Powders by Spark Plasma Sintering (Spark Plasma Sintering에 의한 가스분무 Mg-Zn-Y 합금분말의 성형특성)

  • Lee, Jin-Kyu;Kim, Taek-Soo;Bae, Jung-Chan
    • Journal of Powder Materials
    • /
    • v.14 no.2 s.61
    • /
    • pp.140-144
    • /
    • 2007
  • Using Spark Plasma Sintering process (SPS), consolidation behavior of gas atomized $Mg_{97}Zn_1Y_2$ alloys were investigated via examining the microstructure and evaluating the mechanical properties. In the atomized ahoy powders, fine $Mg_{12}YZn$ particles were homogeneously distributed in the ${\alpha}-Mg$ matrix. The phase distribution was maintained even after SPS at 723 K, although $Mg_{24}Y_5$ particles were newly precipitated by consolidating at 748 K. The density of the consolidated bulk Mg-Zn-Y alloy was $1.86g/cm^3$. The ultimate tensile strength (UTS) and elongation were varied with the consolidation temperature.

Sintering Behavior of (Ti+Ni) Powder Mixture during Spark-Plasma Sintering (방전플라즈마소결에 있어서의 (Ti+Ni) 혼합불말의 소결거동)

  • 김지순;양석균;정순호;강지훈;권영순
    • Journal of Powder Materials
    • /
    • v.11 no.1
    • /
    • pp.55-59
    • /
    • 2004
  • TiNi bodies were produced from (Ti+Ni) powder mixture by spark-plasma sintering procerg. The sintering behavior was investigated through the measurement of change in density, densification rate, phase analysis and microstructure. Irrespective of heating rate, sintered bodies with above 97% relative density could be obtained. TiNi with B2 structure was confirmed as the major phase and $Ti_2Ni,\;TiNi_3$, unreacted Ti, Ni as the second phase. Increase in heating rate suppressed a formation of intermediate phase during sintering process. Increase in holding time at sintering temperature led to a compositional homogenization.

Sintering Behavior and Mechanical Property of B4C Ceramics Fabricated by Spark Plasma Sintering (방전플라즈마 소결법에 의한 탄화 붕소 세라믹스의 소결 거동 및 기계적 특성)

  • Kim, Kyoung-Hun;Chae, Jae-Hong;Park, Joo-Seok;Kim, Dae-Keun;Shim, Kwang-Bo;Lee, Byung-Ha
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.1
    • /
    • pp.60-64
    • /
    • 2008
  • [ $B_4C$ ] ceramics were fabricated by spark plasma sintering process and their sintering behavior, microstructure and mechanical properties were evaluated. Relative density of $B_4C$ ceramics could be achieved by spark plasma sintering method reached as high as 99% at lower temperature than conventional sintering method, in addition, without any sintering additives. The mechanical properties of $B_4C$ ceramics could be improved by the heat treatment at $1300^{\circ}C$ during sintering process which can be removed $B_2O_3$ phase from a $B_4C$ powder surface. This improvement results from the formation of a fine and homogeneous microstructure because the grain coarsening was suppressed by the elimination of $B_2O_3$ phase. Particularly, mechanical properties of the specimen experienced the $B_2O_3$ removing process improved over 30% compared with the specimen without that process.

Pressureless Sintering and Spark-Plasma Sintering of Fe-TiC Composite Powders (Fe-TiC 복합재료 분말의 상압소결과 방전플라즈마소결)

  • Lee, B.H.;Bae, S.W.;Bae, S.W.;Khoa, H.X.;Kim, Ji Soon
    • Journal of Powder Materials
    • /
    • v.22 no.4
    • /
    • pp.283-288
    • /
    • 2015
  • Two sintering methods of a pressureless sintering and a spark-plasma sintering are tested to densify the Fe-TiC composite powders which are fabricated by high-energy ball-milling. A powder mixture of Fe and TiC is prepared in a planetary ball mill at a rotation speed of 500 rpm for 1h. Pressureless sintering is performed at 1100, 1200 and $1300^{\circ}C$ for 1-3 hours in a tube furnace under flowing argon gas atmosphere. Spark-plasma sintering is carried out under the following condition: sintering temperature of $1050^{\circ}C$, soaking time of 10 min, sintering pressure of 50 MPa, heating rate of $50^{\circ}C$, and in a vacuum of 0.1 Pa. The curves of shrinkage and its derivative (shrinkage rate) are obtained from the data stored automatically during sintering process. The densification behaviors are investigated from the observation of fracture surface and cross-section of the sintered compacts. The pressureless-sintered powder compacts show incomplete densification with a relative denstiy of 86.1% after sintering at $1300^{\circ}C$ for 3h. Spark-plasma sintering at $1050^{\circ}C$ for 10 min exhibits nearly complete densification of 98.6% relative density under the sintering pressure of 50 MPa.