• 제목/요약/키워드: spark advance

검색결과 51건 처리시간 0.025초

감쇠파 고주파전압의 선행방전을 이용한 Plasma jet의 전기적 기동특성에 대한 실험적 연구 (The Experimental Research On The Electrical Characteristics For The Ignition Of Plasma Jet Using The Advance Discharge Of High Frequency Voltage With Attenuation)

  • 전춘생
    • 전기의세계
    • /
    • 제21권4호
    • /
    • pp.27-38
    • /
    • 1972
  • This paper discusses the characteristics about the ignition of D.C. main discharge is a plasma jet generator, manufactured for trial as non-transferred type, when the electrical energy appropriate to the ignition is supplied to the gap between the electrodes by using advance discharge of attenuating high frequency voltage generated by a high frequency oscillator with mercury spark gap. These characteristics are under the influences of (a) the length of mercury gap in high frequency oscillator and the quantity of hydrogen flow supplied to it, (b) the condenser capacity of the high frequency oscillator circuit, (c) the length of plasma jet torch in D.C. main discharge circuit and the quantity of argon flow supplied to it, (d) the circuit constants of D.C. main discharge circuit. The results for these characteristics, obtained by this research, are considered to be helpful to the designs for the ignition of a plasma jet as well as the welding arc stabilizer by high frequency discharge and the high frequency arc welder.

  • PDF

자동차용 기관의 냉각수 온도조절 최적화에 관한 연구(I) (A Study on the Optimum Cooling Water Temperature Control of an Automotive Engine(I))

  • 박경석;신진식;이경우
    • 오토저널
    • /
    • 제14권2호
    • /
    • pp.34-43
    • /
    • 1992
  • The purpose of this study is to consider the performance and exhaust characteristics in the practical engine according to the cooling water temperature change of engine and to set up the optimum cooling condition and to obtain the optimum operating condition of thermostat in the cooling system. In order to accomplish the purpose of this study, authors have used the following procedure. 1. This study is to investigate the influence of the cooling water temperature on the engine performance and the exhaust gas, authors regulated the cooling water temperature by using the special closing circuit and measured the concentration of exhaust gas by using the exhaust gas measuring system in the exhaust pipe. 2. This study carried out the experiment by regulating the opening degree of throttle valve and engine speed in the dynamometer and by changing the cooling water temperature, at the same time kept air-fuel ratio constant and made the spark ignition time MBT(Minimum spark advance for Best Torque) 3. This study measured the cooling water temperature by using the K-type thermocouple centring around the easy over-heated parts and by installing a special closing circuit. Therefore, in this study, authors intend to examine the influence of the cooling water temperature on the engine performance, exhaust gas and present the basic materials needed in the engine design including the optimum operating time control system for the cooling water temperature.

  • PDF

디젤엔진을 개조한 LPG엔진의 기관성능에 미치는 압축비의 영향 (Influence of Compression Ratio on Engine Performance in a LPG Engine Converted from a Diesel Engine)

  • 최경호;김진호;정연종;한성빈
    • 대한기계학회논문집B
    • /
    • 제28권10호
    • /
    • pp.1178-1183
    • /
    • 2004
  • The purpose of this study was to investigate the influence of compression ratio on engine performance in a LPG(Liquefied Petroleum Gas) engine converted from a diesel engine. In ordor to determine the ideal compression ratio, a variable compression ratio 4-cylinder engine was developed. Retrofitting a diesel engine into a LPG engine is technically very complicated compared to a gasoline to LPG conversion. The cylinder head and the piston crown were modified to bum LPG in the engine. Compression ratios were increased from 8 to 10 in an increment of 0.5, the ignition timing was controlled to be at MBT(Minimum Spark Advance for Best Torque) for each case.

기체분리막에 의해 상승된 산소농도가 스파크점화기관의 연소에 미치는 영향 (The effects of oxygen-concentration increased by oxygen-enriching membrane on combustion of S.I. engines)

  • 권병철;김형섭
    • 오토저널
    • /
    • 제14권6호
    • /
    • pp.74-80
    • /
    • 1992
  • The purpose of this study is to improve the performance of gasoline engine. Combustion-characteristics orignated from supplying cylinder with fuel-air mixture which was formed by the rise of oxygen-concentration in air with oxygen-enriching membrane have been investigated. The results showed that the poor-limit of oxygen-concentration was increased by shortening combustion-duration because the rise of oxygen-concentration in fuel-air mixture resulted in the promotion of combustion-velocity. Also, the generation of large output of power was expected from combustion in proportion as the amount of oxygen was increased.

  • PDF

Experimental Study on Comparison of Flame Propagation Velocity for the Performance Improvement of Natural Gas Engine

  • Chung Jin Do;Jeong Dong Soo
    • 한국환경과학회지
    • /
    • 제14권1호
    • /
    • pp.15-22
    • /
    • 2005
  • Natural gas possesses several characteristics that make it desirable as an engine fuel; 1)lower production cost, 2)abundant commodity and 3)cleaner energy source than gasoline. Due to the physics characteristics of natural gas, the volumetric efficiency and flame speed of a natural gas engine are lower than those of a gasoline engine, which results in a power loss of $10-20{\%}$ when compared to a normal gasoline engine. This paper describes the results of a research to improve the performance of a natural gas engine through the modification and controls of compression ratio, air/fuel ratio, spark advance and supercharging and method of measuring flame propagation velocity. It emphasizes how to improve the power characteristics of a natural gas engine. Combustion characteristics are also studied using an ion probe. The ion probe is applied to measure flame speed of gasoline and methane fuels to confirm the performance improvement of natural gas engine combustion characteristics.

SI 엔진에서의 가솔린과 액화석유가스 연료의 연소특성 비교 연구 (A Study on the Comparison of Fuel Combustion Characteristics between Gasoline and Liquified Petroleum Gas on SI Engine)

  • 박성천;고영남;권영웅
    • 동력기계공학회지
    • /
    • 제12권4호
    • /
    • pp.12-17
    • /
    • 2008
  • The purpose of this study is to analyse and compare the fuel combustion characteristics between LPG and gasoline on SI engine. Pressures of combustion chamber were measured on the state that engine speed was 2000rpm and BMEP was 2.0bar And we measured pressures of combustion chamber regarding variation of the MBT We could know that the combustion pressure of LPG fuel use engine is appeared lower than that of gasoline fuel use engine. At the lean mixture ratio area we could blow that Ignition timings are pulled very forward, and ignition timing of LPG fuel is advanced to $5\sim12^{\circ}$ CA than gasoline fuel. We learned that the value of coefficient of variation of LPG fuel is higher than gasoline fuel.

  • PDF

터보과급 가솔린기관의 열전달에 관한 연구 (A study on the heat transfer of the turbocharged gasoline engine)

  • 최영돈;홍진관
    • 오토저널
    • /
    • 제10권5호
    • /
    • pp.69-82
    • /
    • 1988
  • Heat transfer experiment is carried out during the performance test of the 4-cylinder 4-stroke cycle turbo-charged gasoline engine. Cycle simulation employing the measured pressure in cylinder, the cooling water temperature and flow rate and others is carried out in order to calculate the gas temperature in cylinder. In this simulation combustion process was simulated by Annand's two zone model and suction, compression, and other processes are calculated completely. From this simulation, we can obtain not only the heat transfer coefficient but also the flame speed, turbulent burning velocity, flame factor and the boiling condition of cooling passage. The results are investigated with engine speed, equivalence ratio and spark advance.

  • PDF

낮은 엔진 부하의 운전조건에서 흡기포트 내 물 분사에 따른 가솔린 직접분사 엔진의 연소 특성 (Combustion Characteristics of Gasoline Direct Injection Engine with Water Injection into Intake Port under Low Engine-Load Operating Condition)

  • 전해강;이경환;최명식;박수한
    • 한국분무공학회지
    • /
    • 제23권2호
    • /
    • pp.96-101
    • /
    • 2018
  • The purpose of this study is to investigate the effect of water injection on combustion characteristics of gasoline direct injection (GDI) engine with turbo-charger under low-load operating condition. The test engine used in this study has four-cylinder and 10.2 of compression ratio. In order to study the effect of water injection ratio on combustion characteristics, the water was injected into the intake port from 10% to 50%, based on fuel injection quantity. From the experiment, it revealed that the water injection induced the improvement of fuel economy because of the advance of spark-timing by the reduction of in-cylinder temperature. In addition, the water injection caused the prolong of extension of the ignition delay and slight increase of burn duration.

스파크점화 기관의 성능향상을 위한 회전형 흡배기장치의 개발에 관한 연구 (A Study on Development 9f Rotary Valve for Performance Enhancement in SI Engine)

  • 김치원;윤창식;김유식
    • 한국안전학회지
    • /
    • 제10권3호
    • /
    • pp.11-20
    • /
    • 1995
  • In recent years, the study on the high efficiency of the internal combustion engine has been mainly proceeding. In this study, we developed rotary valve to achieve the improvement of volumetric efficiency and to be simple construction. And then made a comparative analysis between rotary and poppet valve. In this experiment, rotary valve enlarged the flow area of valve port to minimize the resistance of the fluid flow and to flow smoothly in intake and exhaust process. Indeed, valve timing was controlled properly lest positive pressure in exhaust process should affect intake process. Motoring and firing experiments were using engine speed and air-fuel ratio as the principle parameter and the full opening of throttle valve and minimum spark advance for best torque (MBT) as engine operating variables.

  • PDF

The Effect of Hydrogen Enrichment on Exhaust Emissions and Thermal Efficiency in a LPG fuelled Engine

  • Park, Gyeung-Ho;Han, Sung-Bin;Chung, Yon-Jong
    • Journal of Mechanical Science and Technology
    • /
    • 제17권8호
    • /
    • pp.1196-1202
    • /
    • 2003
  • The concept of hydrogen enriched LPG fuelled engine can be essentially characterized as low emissions and reduction of backfire for hydrogen engine. The purpose of study is obtaining low-emission and high-efficiency in LPG engine with hydrogen enrichment. In order to determine the ideal compression ratio, a variable compression ratio single cylinder engine was developed. The objective of this paper is to clarify the effects of hydrogen enriched LPG fuelled engine on exhaust emission, thermal efficiency and performance. The compression ratio of 8 was selected to minimize abnormal combustion. To maintain equal heating value, the amount of LPG was decreased, and hydrogen was gradually added. In a similar manner, the relative air-fuel ratio was increased from 0.8 to 1.3 in increment of 0.1, and the ignition timing was controlled to be at MBT each case.