• Title/Summary/Keyword: span

Search Result 5,028, Processing Time 0.03 seconds

A Study on the Estimation Analysis Methodology of the Optimum Economic Life-Span of Buildings (건축물의 최적 경제수명 추정분석 방법론에 관한 연구)

  • Choi, Jun-Young
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.6 no.3
    • /
    • pp.223-230
    • /
    • 2003
  • Generally, the life-span of a multi-housing complex is over 50 years, but in reality they are usually demolished after 20 years in spite of its remaining life expectancy. Thus, this research focuses on the estimation of the optimum economic life-span of a multi-housing complex. To estimate the minimum total cost point of start to finish of a multi-housing complex, we'll apply MAPI(Machinery and Allied Product Institute) and LCC(Life Cycle Cost) theory.

  • PDF

Field Survey and Structural Safety Analysis of Pipe Framed Greenhouses (파이프 골조 온실의 구조 실태 및 안전성 검토(농업시설))

  • 남상운;김문기;유인호
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.315-320
    • /
    • 2000
  • An investigation and structural safety analysis was conducted to get the basic data for establishing maintenance strategy of pipe framed greenhouses. The number of greenhouses investigated was 108 in total. Most multi-span greenhouses had narrower width and lower height than the standard 1-2W greenhouse, and most of single-span greenhouses were tunnel type. In multi-span greenhouses, the size and interval of frameworks such as rafter, purline, column, and cross beam were mostly suitable, but frameworks of single-span greenhouses were mostly insufficient.

  • PDF

다 span변단면주 산형가구의 실용해에 관한 연구

  • Ham, Seong-Gwon
    • Korean Architects
    • /
    • no.11 s.82
    • /
    • pp.22-25
    • /
    • 1975
  • The aim of this study is the introduction of simplified method for the design stress analysis of multi-span gable frame structures with crane supports. Under the author's assumptions made previously for the same structures of single span, simplified stress analysis and exact computer analysis are excuted for some multi-span sample structures. Comparing the results of both stress analysis and with some modifications, a feasible simplified method for the design stress analysis of multi-span gable frame structures with crane supports is established.

  • PDF

Real-Time Tension Control in a Multi-Span Continuous Process System (멀티-스팬 연속 공정 시스템의 실시간 장력 제어)

  • Shin, Kee-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.5
    • /
    • pp.108-116
    • /
    • 1995
  • A tension control strategy for a multi-span web transport system is proposed. This strategy is developed by using the tension transfer phenomena in multi-span systems. The performance of this control strategy is compared with that of an existing control strategy through a computer simulation. A real-time software is designed based on the proposed tension control stration of master speed drive in tension control is demonstrated.

  • PDF

A Study on the Properties and Preparation of Silicon-based Defoamer Used in the Purification of Wasted-Water Extruded in the Paper-Fabrication (제지공장의 폐수처리에 사용되는 실리콘계 소포제의 제조 및 물성에 관한 연구)

  • Choi, Sang-goo;Lee, Nae-Taek
    • Applied Chemistry for Engineering
    • /
    • v.16 no.5
    • /
    • pp.614-619
    • /
    • 2005
  • The water-soluble defoamers were fabricated by the mixing polyol, modified silicon resin, silicon resin and surfactant. For the defoamers, the various properties such as phase-separation time, viscosity and defoamerability were examined. The phase-saparation time of PPG mixtures was found to be PPG 400>PPG 3,000>PPG 1000. When PPG 1000 was mixed, mixtures represented the excellent defoamerability. The phase-saparation time of silicon resin mixtures was TSF-451-350>TSF-451-200>TSF-451-50. As more of high molecular silicon resin was mixed, the resulting mixtues showed reduced defoamerability. When the TSF-451-50 was mixed, the mixture's volume was increased because of the reduction of solubility. The modified silicon resin was smoothly dispersed in water, but the compatibility with PPG was not good. The defoamerability of surfactant was SPAN 20>SPAN 60>SPAN 80. SPAN 80 showed good miscibility for the silicon resin, but not good for YAS 6406 or PPG 1000.

Ultimate behavior of long-span steel arch bridges

  • Cheng, Jin;Jiang, Jian-Jing;Xiao, Ru-Cheng;Xiang, Hai-Fan
    • Structural Engineering and Mechanics
    • /
    • v.14 no.3
    • /
    • pp.331-343
    • /
    • 2002
  • Because of the increasing span of arch bridges, ultimate capacity analysis recently becomes more focused both on design and construction. This paper investigates the static and ultimate behavior of a long-span steel arch bridge up to failure and evaluates the overall safety of the bridge. The example bridge is a long-span steel arch bridge with a 550 m-long central span under construction in Shanghai, China. This will be the longest central span of any arch bridge in the world. Ultimate behavior of the example bridge is investigated using three methods. Comparisons of the accuracy and reliability of the three methods are given. The effects of material nonlinearity of individual bridge element and distribution pattern of live load and initial lateral deflection of main arch ribs as well as yield stresses of material and changes of temperature on the ultimate load-carrying capacity of the bridge have been studied. The results show that the distribution pattern of live load and yield stresses of material have important effects on bridge behavior. The critical load analyses based on the linear buckling method and geometrically nonlinear buckling method considerably overestimate the load-carrying capacity of the bridge. The ultimate load-carrying capacity analysis and overall safety evaluation of a long-span steel arch bridge should be based on the geometrically and materially nonlinear buckling method. Finally, the in-plane failure mechanism of long-span steel arch bridges is explained by tracing the spread of plastic zones.

Shape optimization for partial double-layer spherical reticulated shells of pyramidal system

  • Wu, J.;Lu, X.Y.;Li, S.C.;Zhang, D.L.;Xu, Z.H.;Li, L.P.;Xue, Y.G.
    • Structural Engineering and Mechanics
    • /
    • v.55 no.3
    • /
    • pp.555-581
    • /
    • 2015
  • Triangular pyramid and Quadrangular pyramid elements for partial double-layer spherical reticulated shells of pyramidal system are investigated in the present study. Macro programs for six typical partial double-layer spherical reticulated shells of pyramidal system are compiled by using the ANSYS Parametric Design Language (APDL). Internal force analysis of six spherical reticulated shells is carried out. Distribution regularity of the stress and displacement are studied. A shape optimization program is proposed by adopting the sequence two-stage algorithm (RDQA) in FORTRAN environment based on the characteristics of partial double-layer spherical reticulated shells of pyramidal system and the ideas of discrete variable optimization design. Shape optimization is achieved by considering the objective function of the minimum total steel consumption, global and locality constraints. The shape optimization of six spherical reticulated shells is calculated with the span of 30m~120m and rise to span ratio of 1/7~1/3. The variations of the total steel consumption along with the span and rise to span ratio are discussed with contrast to the results of shape optimization. The optimal combination of main design parameters for six spherical reticulated shells is investigated, i.e., the number of the optimal grids. The results show that: (1) The Kiewitt and Geodesic partial double-layer spherical reticulated shells of triangular pyramidal system should be preferentially adopted in large and medium-span structures. The range of rise to span ratio is from 1/6 to 1/5. (2) The Ribbed and Schwedler partial double-layer spherical reticulated shells of quadrangular pyramidal system should be preferentially adopted in small-span structures. The rise to span ratio should be 1/4. (3) Grids of the six spherical reticulated shells can be optimized after shape optimization and the total steel consumption is optimized to be the least.

Initial Equilibrium State Analysis of Cable Members for Preliminary Analysis of Multi-span Suspension Bridge under Dead Load (고정하중을 받는 다경간 현수교의 예비해석을 위한 케이블 부재의 초기평형상태 해석)

  • Choi, Dong-Ho;Na, Ho-Sung;Gwon, Sun-Gil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.1
    • /
    • pp.21-29
    • /
    • 2016
  • This paper proposes a method to determine the initial equilibrium state of cable members for preliminary analysis of multi-span suspension bridge under dead load. The proposed method is simpler and more practical than the previous methods used in other studies. The proposed method can be applied to three-span or multi-span suspension bridges. To verify the proposed method, an three-span model as well as four-span models such as New Millenium Bridge in Korea and Yingwuzhou Bridge in China are analyzed. In the verification results, the initial coordinates and tensions of the members calculated by the proposed method are good agreement with those in the previous study for the three-span model and those in the design data of New Millenium Bridge. In addition, the proposed method gives the initial values to keep the initial configuration of Yingwuzhou Bridge.

A study on the Gal Do(骨度) of the Young Chu(靈樞) (영추(靈樞).골도(骨度)에 대(對)한 연구(硏究))

  • Du, Ja-Sung;Roh, Stella;Lee, Tae-Ho;Lee, Young-Sub;Keum, Kyoung-Su;Jeong, Heon-Young
    • Journal of Korean Medical classics
    • /
    • v.19 no.3
    • /
    • pp.305-313
    • /
    • 2006
  • According to the bone-standard measuring, the length between the elbow and the wrist has the span of 1.25 cheoks whereas it has the span of 1.2 cheoks or 1.2 cheoks today, the breadth of the chest has the span of 9.5 chons whereas it has the span of 8 chons today, and the length from celestial pivot to transverse bone has the span of 6.5 chons whereas it has the span of 5 chons, and the length from free rib region to thigh pivot has the span of 6 chons whereas it has the span of 9 chons today. It is said that all of the acupuncture points are correctly prescribed by the bone-standard measuring irrespective of men and women of all ages, fat and lean, and whether large or small in height. This lies at the root of the selecting acupuncture points. The bone standard in Spiritual Pivot and that in common use at present have a little difference and the bone standard of today is based upon A-B Classic. Spiritual Pivot named as Acupuncture Classic was in good preservation until the mid-eleventh century, but the book lost a lot in contents was the incomplete edition. In the 8th year of the king Cheoljong's reign of the North Song Dynasty in 1093, though the nine-volume Spiritual Pivot drafted from the Goryo Dynasty was published, the book was wanting in consistency. While on the other, I think that A-B Classic which has been in a state of perfection had a great influence on the healers of the day.

  • PDF

Dispersion-managed Optical Links with the Ascending or Descending of SMF Lengths and RDPS as the Fiber Span is Increased (중계 구간이 증가할수록 SMF 길이와 RDPS가 점진적으로 증가하거나 감소하는 분산 제어 광전송 링크)

  • Lee, Seong-Real
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.5
    • /
    • pp.462-467
    • /
    • 2016
  • Dispersion management (DM) combining with mid-spans spectral inversion (MSSI) is one of the various techniques compensating for the distorted optical signals. For the flexible implementation of this configured link, the compensation characteristics in the optical link with artificial distribution of the gradually ascending and descending of single mode fiber (SMF)'s lengths and residual dispersion per span (RDPS) as the number of fiber spans are assessed as a function of the control positions of net residual dispersion (NRD). It is confirmed that the best compensation is obtained by distributing gradually ascending or descending of SMF's lengths and RDPS capable to place NRD control position at fiber span, in which optical pulse width is most narrow.