• Title/Summary/Keyword: spalling thickness

Search Result 42, Processing Time 0.033 seconds

Properties of Temperature History and Spatting Resistance of High Performance RC Column with Finishing Material (내화 마감재 종류에 따른 고성능 RC기둥의 폭열방지 및 온도이력 특성)

  • Heo Young-Sun;Kim Ki-Hoon;Lee Jin-Woo;Lee Bo-Hyeung;Lee Jae-Sam;Han Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2005.05a
    • /
    • pp.37-40
    • /
    • 2005
  • High Performance Concrete(HPC) has been widely used in high-rise building. The HPC has several benefits including high strength, high fluidity and high durability. However. spatting is susceptible to occur in HPC and HPC also tends to be deteriorated in the side of fire resistance performance at fire. This paper focuses on the analysis of the temperature history and residual compressive strength with finishing material, in order to protect HPC from sudden-high-temperature, which is one of the main reason spatting occurs. Test results show that spalling occurs in all specimens. The most serious spalling took placed in HPC covering fire enduring spray-on material, whose covering thickness is 20mm but temperature history indicates that fire enduring spray effectively protected HPC from fire for more than 2hours. In addition, residual compressive strength ratio of HPC using fire enduring paint was more than $90\%$ of original strength, thus minimizing spatting and indicating significant fire resistance performance.

  • PDF

Fire Resistance Performance of High Strength-Light Weight Concrete (고강도를 적용한 1종 경량골재 콘크리트의 내화특성)

  • Song, Hun;Lee, Jong-Chan;Lee, Sea-Hyun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.749-752
    • /
    • 2005
  • Normally, the degradation of concrete member exposed to fire is largely dependent on the fire scale and fire condition. With all ensuring the fire resistance structure as a method of setting the required cover thickness to fire, the RC is significantly affected from the standpoint of its structural stability that the compressive strength and elastic modulus is reduced by fire. Thus, this study is concerned with experimentally investigating fire resistance of high strength-light weight concrete. From the test result, high strength-light weight concrete is happened explosive spalling. The decrease of cross section caused by explosive spalling made sharp increasing gradient of inner temperature.

  • PDF

Fire resistance assessment of high strength segment concrete depending on PET fiber amount under fire curves (화재곡선과 PET섬유 혼입량에 따른 고강도 세그먼트 콘크리트의 화재저항성 평가에 대한 연구)

  • Choi, Soon-Wook;Lee, Gyu-Phil;Chang, Soo-Ho;Park, Young-Taek;Bae, Gyu-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.3
    • /
    • pp.311-320
    • /
    • 2014
  • High strength concrete is not only vulnerable to the occurrence of spalling which generates the loss of cross-section in concrete structures but produces faster degradation in its mechanical properties than normal strength concrete in the event of fire. This study aims to evaluate fire resistance of high strength segment concrete with PET fibers mixed to prevent spalling under ISO834 (2hr) and RABT fire curve. As results, the samples without PET fibers show the concrete loss up to the depth of about 8 cm and 9.5 cm from the surface exposed to fire under ISO834 and RABT fire curve respectively. The samples mixed with PET fiber of 0.1% show no spalling under ISO834 fire curve and the spalled thickness of 6.5 cm under RABT fire curve after the fire tests. Finally, the sample mixed with PET fiber of 0.2% shows no spalling under RABT fire curve. The results indicate that the suitable amounts of PET fiber for securing fire resistance performance of this high strength segment concrete are 0.1% under ISO834 fire curve and 0.2% under RABT fire curve. However, even though spalling does not occur, it is necessary to repair the deterioration of concrete up to 4 cm from the surface exposed to fire after fire.

Evaluation of Protective Performance of Fiber Reinforced Concrete T-Wall (섬유보강 콘크리트 방호벽의 방호성능 향상 검토)

  • Lee, In-Cheol;Kim, Hong-Seop;Nam, Jeong-Soo;Kim, Suk-Bong;Kim, Gyu-Yong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.13 no.5
    • /
    • pp.465-473
    • /
    • 2013
  • Concrete is an outstanding material in terms of its impact and blast resistance performance. However, there a limitation of concrete is its risk of collapse due to the brittle failure and spalling. Increasing the thickness of members was used as a method to enhance the protective performance of concrete, despite the resulting inefficient space. To solve this problem, different types of fiber reinforced concrete were developed. Recently, another type of fiber reinforced concrete is also being developed and applied as a material that offers protection against impacts and blasts by increasing the flexural toughness of concrete. In this study, the test was conducted to evaluate the impact resistance performance of fiber reinforced concrete and mortar according to impact of high-velocity projectile. A concrete T-wall was also tested to evaluate its protective performance from fragment by 155mm-thick artillery shell. The test results revealed that improving flexural strength through fiber reinforcement inhibited cracks and spalling of rear, and spalling of front by high-velocity impact. As such, it is expected to improve the protective performance of the T-wall and reduce the thickness of the member.

Experimental Investigation to Establish Correlation between Specific Film Thickness and Sound Signals in a Spur Gear System (스퍼 기어 시스템의 음향 신호와 비 유막 두께(Specific Film Thickness)의 상관관계에 관한 실험적 연구)

  • Kim, Jongsik;Amarnath, M.;Lee, Sangkwon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.8
    • /
    • pp.643-650
    • /
    • 2014
  • Gear transmission system is widely applied in engineering. As the problem of contact fatigue, wear, lubrication failure etc, the condition of gear teeth contacts will be worse. The vibration and sound signals in the gear system will be affected by the some failures like scuffing, abrasive wear and spalling due to the deterioration of gear teeth surface. By studying the estimation of specific film thickness, measurement of reduction in tooth thickness, visual examination of wear mechanisms on the gear teeth and their effects on the statistical parameters of vibration and sound signals, the research obtained the satisfactory results on accessing the surface fatigue wear in a spur gear system. The paper utilizes the relationship between statistical parameters obtained from sound signals and Stribeck curve to confirm the hypothesis of dependency of surface fatigue wear, specific film thickness.

Spatting Resistance of High Strength RC Column Covering Spray-on Materials of Fiber Composite Spray Mortar(FCSM) (섬유복합모르터의 뿜칠마감에 의한 고강도콘크리트 기둥부재의 폭렬방지)

  • Song Yong-Won;Han Dong-Yeob;Lee Gun-Cheol;Goh Kyoung-Taek;Kim Jin-Soo;Han Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.05a
    • /
    • pp.5-8
    • /
    • 2006
  • High strength concrete has been increasingly used in high rue building and it is very obvious re consider fire resistance performance of that. Unlike the normal strength concrete, high strength concrete in sudden elevating temperature at fire is susceptible to spalling with severe explosion and surface split, due to high density of concrete. In order to endure the spalling, inner space temperature of concrete should be control less than certain point. Therefore this study investigated the influence of covering materials on high strength concrete finishing spray-on materials of fiber composite spray mortar(FCSM). Both polypropylene(PP) and polyvinyl alcohol(PVA) fiber were used in this test. Test showed that concrete, covering 18mm mortar containing PVA fiber and confining metal lath 2.3mm thickness, decreased 50% of main bar ambient temperature. compared with control concrete. In addition, concrete covering 18mm mortar without fiber caused falling of covering materials and then it was exposed in elevating temperature. As a result, spatting of the concrete occurred same as control concrete. However, concrete covering spray-on mortar containing PVA or PP fiber resisted spatting occurrence.

  • PDF

The Effect of Thickness of Sprayed Fireproofing on Temperature of Main Bars under Fire Test (화재 시험시 내화 피복재 두께가 주철근의 온도에 미치는 영향)

  • Park Chan Kyu;Lee Seung Hoon;Kim Gyu Dong;Kim Gyu Yong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.389-392
    • /
    • 2005
  • In this study, the effect of thickness of sprayed fireproofing on temperature of main bars under fire test was investigated for high strength concrete member(column) prevented the spalling. The thicknesses of sprayed fireproofing were 0, 10, 20 and 30mm. Test was carried out according to ISO-KS standard temperature-time curve during 3hrs. Based on temperature results of main bars after 3hrs, it appears that the temperatures of the main coner bar are about 400$^{circ}C$ and 500$^{circ}C$, when the thicknesses of sprayed fireproofing are 5mm and 2mm, respectively.

  • PDF

Experimental Studies on the Effect of Various Design Parameters on Thermal Behaviors of High Strength Concrete Columns under High Temperatures (다양한 설계변수에 따른 고강도 콘크리트 기둥의 열적 거동 분석을 위한 실험 연구)

  • Shin, Yeong-Soo;Park, Jee-Eun;Mun, Ji-Young;Kim, Hee-Sun
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.3
    • /
    • pp.377-384
    • /
    • 2011
  • Although concrete is considered as fire proof materials, high strength concrete shows severe material and structural damages when exposed to fire. To understand such damages in high strength concrete structures, the effects of various design parameters and fire condition on the thermal behaviors of high strength concrete structures are investigated in this study. In order to achieve this goal, fire tests are performed on high strength concrete columns with different fire conditions and design parameters including cross sectional area, cover thickness, and reinforcement alignment. To investigate thermal behaviors, temperature distributions and amount of spalling are measured. In overall, the columns show rapidly increasing inner temperatures between 30~60 mins of the fire tests due to spalling. In detail, the higher temperature distributions are observed from the columns with the larger cross section and less cover thickness. Moreover, among the columns with same reinforcing ratio, larger number of reinforcements with the smaller diameter causes the higher temperature distribution. The findings from the experimental study allow not only understanding of thermal behaviors of high strength concrete columns under fire, but also guidance in revising fire safety design.

Fire Resistance of High-Strength Concrete Corresponding to the Finishing Material Kinds and Thickness (마감재 종류 및 두께 변화에 따른 고강도 콘크리드의 내화특성)

  • Jung, Hong-Keun;Pei, Chang-Chun;Lee, Seong-Yeun;Han, Chang-Peng;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.473-474
    • /
    • 2009
  • In this study, a column member of an existing architecture finished with gypsum board was assumed to examine fire resistance characteristics according to the type and thickness of finishing material. All specimens showed spalling to the reinforcing part after fire resistance test. For temperature characteristics, rapid temperature increase of 100${\sim}$200 $^{\circ}C$ was shown between 35 ${\sim}$ 60 minutes in the sequence of 9.5 T, 9.5 T (2 pieces), 12.5 T, 15 T and fire resistant 12.5 T. The analysis suggested that finishing materials with better fire resistance are necessary.

  • PDF

Study on the local damage of SFRC with different fraction under contact blast loading

  • Zhang, Yongliang;Zhao, Kai;Li, Yongchi;Gu, Jincai;Ye, Zhongbao;Ma, Jian
    • Computers and Concrete
    • /
    • v.22 no.1
    • /
    • pp.63-70
    • /
    • 2018
  • The steel fiber reinforced concrete (SFRC) shows better performance under dynamic loading than conventional concrete in virtue of its good ductility. In this paper, a series of quasi-static experiments were carried out on the SFRC with volume fractions from 0 to 6%. The compressive strength increases by 38% while the tension strength increases by 106% when the fraction is 6.0%. The contact explosion tests were also performed on the ${\Phi}40{\times}6cm$ circular SFRC slabs of different volume fractions with 20 g RDX charges placed on their surfaces. The volume of spalling pit decreases rapidly with the increase of steel fiber fraction with a decline of 80% when the fraction is 6%, which is same as the crack density. Based on the experimental results, the fitting formulae are given, which can be used to predict individually the change tendencies of the blast crater volume, the spalling pit volume and the crack density in slabs with the increase of the steel fiber fraction. The new formulae of the thickness of damage region are established, whose predictions agree well with our test results and others. This is of great practical significance for experimental investigations and engineering applications.