• Title/Summary/Keyword: spalling of concrete

Search Result 351, Processing Time 0.033 seconds

Effect of Heating Rate on Spalling Type of High-Strength Concrete (고강도 콘크리트의 폭렬형태에 미치는 가열속도의 영향)

  • Hwang, Eui-Chul;Kim, Guy-Yong;Son, Min-Jae;Suh, Dong-Kyun;Lee, Yae-Chan;Nam, Jeong-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.237-238
    • /
    • 2021
  • This study evaluated the vapor pressure and thermal stress of high-strength concrete according to spalling type. As a result, it was confirmed that the internal temperature gradient of the concrete varies depending on the heating rate, and the vapor pressure and thermal stress of the concrete are the main factors of spalling. In addition, it was confirmed that spalling type varies depending on the vapor pressure and thermal stress of the concrete.

  • PDF

Evaluation on Spalling Properties of Ultra High Strength Concrete with Combined Fiber (복합섬유를 혼입한 초고강도 콘크리트의 폭렬 특성 평가)

  • Son, Myung-Hak;Kim, Gyu-Yong;Min, Choong-Siek;Lee, Tae-Gyu;Koo, Kyung-Mo;Youn, Yong-Sang
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.209-210
    • /
    • 2011
  • This study is aimed to draw a optimum combined fiber mix condition to improve spalling resistance and flowability of ultra high-strength concrete. As a result, W/B 12.5% concrete specimens were prevented spalling with PE0.05+ PP0.1, PE0.05+NY0.1 and W/B 12.5% concrete specimens were prevented spalling with all of combined organic fiber mix condition. But There is no significant influence of steel fiber under 5% volume ratios to prevent spalling. In the scope of this study, we suggest that condition of optimum volume ratio PE0.05+NY0.1 is to improve spalling resistance, flowability and residual compressive strength.

  • PDF

Leveraging artificial intelligence to assess explosive spalling in fire-exposed RC columns

  • Seitllari, A.;Naser, M.Z.
    • Computers and Concrete
    • /
    • v.24 no.3
    • /
    • pp.271-282
    • /
    • 2019
  • Concrete undergoes a series of thermo-based physio-chemical changes once exposed to elevated temperatures. Such changes adversely alter the composition of concrete and oftentimes lead to fire-induced explosive spalling. Spalling is a multidimensional, complex and most of all sophisticated phenomenon with the potential to cause significant damage to fire-exposed concrete structures. Despite past and recent research efforts, we continue to be short of a systematic methodology that is able of accurately assessing the tendency of concrete to spall under fire conditions. In order to bridge this knowledge gap, this study explores integrating novel artificial intelligence (AI) techniques; namely, artificial neural network (ANN), adaptive neuro-fuzzy inference system (ANFIS) and genetic algorithm (GA), together with traditional statistical analysis (multilinear regression (MLR)), to arrive at state-of-the-art procedures to predict occurrence of fire-induced spalling. Through a comprehensive datadriven examination of actual fire tests, this study demonstrates that AI techniques provide attractive tools capable of predicting fire-induced spalling phenomenon with high precision.

Fundamental Properties and Spalling Resistance of High Strength Concrete Containing Hybrid Organic fiber (복합유기섬유를 사용한 고강도 콘크리트의 기초특성 및 폭렬방지)

  • Pei, Chang-Chun;Han, Dong-Yeop;Lee, Jin-Woo;Han, Chang-Pyung;Yang, Seong-Hwan;Han, Cheon-Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.745-748
    • /
    • 2006
  • This study investigates the fundamental properties and examines spalling appearances and residual compressive strength of high strength concrete containing hybrid organic fibers subjected to fire. Test showed that overall, an increase of fiber content decreased the fluidity of concrete, but specimens containing polyvinyl alcoho(PVA)+polypropylene(PP) fiber and nylon(NY)+PP fiber had improved flow. In addition, the air content of all specimens was properly ranged in target value, regardless of fiber content. As for the spalling properties when completed the fire test, control concrete exhibited spalling occurrence due to sudden elevated temperature. However, specimens containing more than 0.1 vol% of PP fiber prevented the spalling, while specimens containing PP+CL and PVA+PP fiber can protected from fire in more than 0.15vol% of the fiber content. Importantly, a specimen containing only 0.05vol% of NY+PP showed the favorable spalling resistance performance.

  • PDF

An Experimental study on Reduction Effect to Explosive spalling of high performance concrete by Fiber Type and Volume Fraction of Fiber (섬유종류 및 혼입량에 따른 고성능콘크트의 폭열저감에 관한 실험적 연구)

  • Na, Chul-Sung;Shin, Kwan-Soo;Kim, Young-Sun;Kwon, Young-Jin;Kim, Gyu-Yong;Kim, Moo-Han
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.81-85
    • /
    • 2005
  • Recently, fire resistance of high performance concrete for explosive spalling was issued as high performance concrete was vulnerable to the explosive spalling in initial fire. Therefore, in this study, an experiment about reduction effect to explosive spalling of high performance concrete is performed by adding several polymer fiber with various volume fraction, an then final fiber and volume fraction of that which reduce the explosive spalling of high performance concrete is presented. As the result of this study, the most fitted fiber volume fraction of reducing effect for explosive spalling at high performance concrete is under the 0.1%, as consider the flowability and efficiency.

  • PDF

Spalling Analysis of High-Strength Reinforced Concrete Columns under High Temperature (고온에 노출된 고강도 콘크리트 기둥의 폭렬해석)

  • Shin, Sung-Woo;Yoo, Suk-Hyeong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.6
    • /
    • pp.193-200
    • /
    • 2007
  • The spalling analysis of high strength concrete columns needs a very complex and difficult process accounting for peeling of cover concrete as well as thermal, thermo-stress and hygro-transfer phenomena. However, the study on the spalling analysis method is insufficient. The practical spalling analysis algorithm is developed in this study, which formulates a vapor pressure equation as the parameter of temperature and cover depth and uses the compatibility condition In results of the spalling analysis, as the concrete strength increases and the content of PP fiber decreases the degree of spalling increases. This shows a similar result as the previous experimental study. Therefore the developed algorithm suggested in this study is expected to be useful in predicting the spalling of high strength concrete columns.

The Spalling Properties of High-Performance Concrete with the Kinds of Aggregates and Polypropylene Fiber Contents (골재종류 및 폴리프로필렌 섬유 혼입률 변화에 따른 고성능콘리트의 폭열 성상)

  • 이병렬;황인성;윤기원;양성환;한천구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.76-79
    • /
    • 1999
  • The purpose of this study is to investigate the spalling properties of high-performance concrete with the kinds of aggregates and polypropylene(below PP) fiber contents. According to the experimental results, concrete contained no PP fiber take place in the form of the surface spalling and the failure of specimens after fire test regardless of the kinds of aggregates. Concrete contained more than 0.05% of PP fiber with the kinds of aggregates does not take place the spalling. Concrete using basalt has better performance in spalling resistance that concrete using granite and limestone. It is found that residual compressive strength has 50~60% of their original strength. Although specimens after exposed at high temperature are cured at water for 28days, they do not recover their original strength.

  • PDF

Spalling Properties of High Performance Concrete Designed with the Various Types of Coarse Aggregate (굵은골재 종류 변화에 따른 고성능 콘크리트의 폭렬특성)

  • Heo, Young-Sun;Park, Yong-Kyu;Jin, Hu-Lin;Jee, Suk-Won;Yang, Seong-Hwan;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.11a
    • /
    • pp.95-98
    • /
    • 2006
  • This study investigates spalling properties of high performance concrete, 60MPa clan, made with the various types of coarse aggregate and adding ratio of polypropylene(PP) fiber. As experimental parameters, totally sixteen specimens of ${\phi}100{\times}200mm$ in size are prepared: one specimen for control without fiber, ten specimens with different coarse aggregate types, along with 0.05, 0.1, 0.15 percent of PP fiber in each. 1 hour fire test is conducted and then spalling appearance, spalling degree and residual compressive strength are examined. In addition, sit specimens made with two types of coarse aggregate site, along with same adding ratio of fiber are supplementally done, and only spalling properties is examined. Test results showed that control concrete and most specimens containing 0.05% of PP fiber exhibited 4 to 3 level of spalling degree, resulting severe explosive spalling, except for the specimen using basalt aggregate(Bc) showing 2 to 3 level of that. Especially, the Bc specimen containing 0.1% of the fiber exhibited that residual compressive strength value was 32%, which is 10% higher than other specimens using limestone or granite. Spalling resistance performance was also effective as aggregate size increase.

  • PDF

An Theoretical study on Spalling Mechanism of Concrete (콘크리트 폭렬발생 메카니즘에 관한 이론적 고찰)

  • Kim, Hyung-Jun;Kim, Heung-Youl;Kim, Gyeong-Ok
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.422-427
    • /
    • 2008
  • The major cause of Concrete Spalling at high temperatures can be divided into the Vapor Pressure Rising, caused by the increase in free water temperature within the concrete, and Pore Pressure Rising induced by the vapor moving into dense pores within the concrete. Although the occurrence of spalling within concrete caused by these pressure increases can be assessed experimentally, a close examination into Mechanistic influence against various spalling factors shall be carried out first by using Mathematical Modeling and Theoretical Equations. The Spalling Prospect Process by theoretical mechanism is expedited in order of the following; selection of heating condition (fire strength and flame heating direction), a selection of constituent elements, an analysis of heat transmission, an analysis of moisture movement, distribution of water content, an analysis of pore/vapor pressure, and assessment of spalling occurrence.

  • PDF

The Spalling Characteristics of High Strength Concrete with Fiber Content (섬유 혼입량에 따른 고강도 콘크리트 폭렬 특성)

  • Park, Chan-Kyu;Lee, Seung-Hoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.387-390
    • /
    • 2005
  • Recently, in order to reduce the spalling of high strength concrete under fire, the addition of organic fibres to high strength concrete has been investigated. In this study, the effect of organic fibre content on the spalling of high strength concrete was experimantally investigated. Two types of fibre, polypropylene(PP) and polyvinyl alcohol(PVA) fibres, were selected, and three water/binder ratios were selected, which were W/B $30\%,\;24.\%,\;and\;16\%$, respectively. As a result, it appears that as the concrete strength increases, the fiber content for prevention spalling increases. When W/B ratios are $30\%,\;24.9\%$, the additions of $0.1vol.\%$ and $0.2vol.\%$, respectively, appear to avoid the spalling in this study.

  • PDF