• 제목/요약/키워드: spacing effect

검색결과 822건 처리시간 0.027초

절리 간격이 암반 사면의 안정성에 미치는 영향 (Influence of Joint Spacing to Rock Slope Stability)

  • 윤운상;권혁신;김정환
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 가을 학술발표회 논문집
    • /
    • pp.511-518
    • /
    • 2000
  • Characteristics of joint orientation, length, spacing and their distribution are very important factors for slope stability, Especially, the effect of joint spacing is an essential factor of slope stability. This study is to analyze the effect of joint spacing in cases of sliding and toppling, which is a typical failure mode. Joint spacing can divided into vertical spacing(spacing) and horizontal spacing(gap). And then, the spacing/length ratio of joint directly affect rock slope failure. When the ratio is below 0.05, the possibility of failure is rapidly increased. In case of toppling, the possibility of failure depends on the ratio of spacing to height of slope ratio slope. As the ratio decreases, the possibility of toppling failure increased. The critical ratio of spacing to height of slope is determined by the dip angle of the slope and the orientation of joint sets.

  • PDF

Effect of Chip Spacing in a Multichip Module on the Heat Transfer for Paraffin Slurry Flow

  • Choi, Min-Goo;Cho, Keum-Nam
    • Journal of Mechanical Science and Technology
    • /
    • 제14권9호
    • /
    • pp.997-1004
    • /
    • 2000
  • The experiments were conducted by using water and paraffin slurry to investigate the effect of a chip spacing in the multichip module on the cooling characteristics from an in-line $4{\times}3$ array of discrete heat sources which were flush mounted on the top wall of a channel. The experimental parameters were chip spacing in a multichip module, heat flux of simulated VLSI chip, mass fraction of paraffin slurry, and channel Reynolds number. The removable heat flux at the same chip surface temperature decreased as the chip spacing decreased at the first and fourth rows. The local heat transfer coefficients for the paraffin slurry were larger than those for water, and the chip spacing on the local heat transfer coefficients for paraffin slurry influenced less than that for water. The enhancement factor for paraffin slurry showed the largest value at a mass fraction of 5% regardless of the chip spacing, and the enhancement factors increased as the chip spacing decreased. This means that the paraffin slurry is more effective than water for cooling of the highly integrated multichip module.

  • PDF

내부순환유동을 고려한 연소하는 액적들의 상호작용 (Interaction of burning droplets with internal circulation)

  • 조종표;김호영;정진택
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2004년도 제28회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.183-191
    • /
    • 2004
  • The burning characteristics of interacting droplets with internal circulation in a convective flow are numerically investigated at various Reynolds numbers. The transient combustion of 2-dimensionally arranged droplets, both the fixed droplet distances of 5 radii to 40 radii horizontally and 4 radii to 24 radii vertically, is studied. The results obtained from the present numerical analysis reveal that the transient flame configuration and retardation of droplet internal motion with the horizontal or vertical droplet spacing substantially influence lifetime of interacting droplets. At a low Reynolds number, lifetime of the two droplets with decreasing horizontal droplet spacing increases monotonically, whereas their lifetime with decreasing vertical droplet spacing decreases due to flow acceleration. This flow acceleration effect is reversed when the vertical droplet spacing is smaller than 5 radii in which decreasing flame penetration depth causes the reduction of heat transfer from flame to droplets. At a high Reynolds number, however, lifetime of the first droplet is hardly affected by either the horizontal droplet spacing or flow acceleration effect. Lifetime with decreasing vertical droplet spacing increases due to reduction of flame penetration depth. Lifetime of interacting droplets exhibits a strong dependence on Reynolds number, the horizontal droplet spacing and the vertical droplet spacing and can be con-elated well with these conditions to that of single burning droplet.

  • PDF

Effect of Axial Spacing between the Components on the Performance of a Counter Rotating Turbine

  • Subbarao, Rayapati;Govardhan, Mukka
    • International Journal of Fluid Machinery and Systems
    • /
    • 제6권4호
    • /
    • pp.170-176
    • /
    • 2013
  • Counter Rotating Turbine (CRT) is an axial turbine with a nozzle followed by a rotor and another rotor that rotates in the opposite direction of the first one. Axial spacing between blade rows plays major role in its performance. Present work involves computationally studying the performance and flow field of CRT with axial spacing of 10, 30 and 70% for different mass flow rates. The turbine components are modeled for all the three spacing. Velocity, pressure, entropy and Mach number distributions across turbine stage are analyzed. Effect of spacing on losses and performance in case of stage, Rotor1 and Rotor2 are elaborated. Results confirm that an optimum axial spacing between turbine components can be obtained for the improved performance of CRT.

Effect of spiral spacing on axial compressive behavior of square reinforced concrete filled steel tube (RCFST) columns

  • Qiao, Qiyun;Zhang, Wenwen;Mou, Ben;Cao, Wanlin
    • Steel and Composite Structures
    • /
    • 제31권6호
    • /
    • pp.559-573
    • /
    • 2019
  • Spiral spacing effect on axial compressive behavior of reinforced concrete filled steel tube (RCFST) stub column is experimentally investigated in this paper. A total of twenty specimens including sixteen square RCFST columns and four benchmarked conventional square concrete filled steel tube (CFST) columns are fabricated and tested. Test variables include spiral spacing (spiral ratio) and concrete strength. The failure modes, load versus displacement curves, compressive rigidity, axial compressive strength, and ductility of the specimens are obtained and analyzed. Especially, the effect of spiral spacing on axial compressive strength and ductility is investigated and discussed in detail. Test results show that heavily arranged spirals considerably increase the ultimate compressive strength but lightly arranged spirals have no obvious effect on the ultimate strength. In practical design, the effect of spirals on RCFST column strength should be considered only when spirals are heavily arranged. Spiral spacing has a considerable effect on increasing the post-peak ductility of RCFST columns. Decreasing of the spiral spacing considerably increases the post-peak ductility of the RCFSTs. When the concrete strength increases, ultimate strength increases but the ductility decreases, due to the brittleness of the higher strength concrete. Arranging spirals, even with a rather small amount of spirals, is an economical and easy solution for improving the ductility of RCFST columns with high-strength concrete. Ultimate compressive strengths of the columns are calculated according to the codes EC4 (2004), GB 50936 (2014), AIJ (2008), and ACI 318 (2014). The ultimate strength of RCFST stub columns can be most precisely evaluated using standard GB 50936 (2014) considering the effect of spiral confinement on core concrete.

재료 특성 변화에 따른 철근콘크리트 휨부재의 간접균열제어 방법 연구 (Indirect Crack Controling Method Affected by Variation of Material Characteristics in Reinforced Concrete Flexural Members)

  • 최승원;김우
    • 콘크리트학회논문집
    • /
    • 제23권1호
    • /
    • pp.87-98
    • /
    • 2011
  • 철근콘크리트 부재의 균열은 필수불가결한 현상이다. 따라서 효과적으로 균열폭을 측정하기 위한 많은 경험식이 제시되었고, 또한 간편한 적용성 때문에 철근 간격과 직경의 제어를 통한 간접균열제어법이 제시되고 널리 사용되고 있다. EC2에서는 최대균열간격과 평균변형률의 곱으로 설계 균열폭을 산정한다. 이 연구에서는 재료 특성에 따른 최대철근간격과 최대철근직경을 산정하였다. 특히 인장증강효과 모델과 최대균열간격에 따른 영향을 분석하였고, 이를 콘크리트구조설계기준에서 제시한 값과 비교하였다. 해석 결과 인장증강효과 모델에 따라 큰 차이가 발생하였고, 2차식 형태의 인장증강효과 모델과 Part II의 최대균열간격을 사용함으로써 과소평가되었다. 따라서 2차식 형태의 인장증강효과 모델을 사용함으로써 합리적인 간접균열제어가 가능하다. 또한 이를 통해 휨부재의 사용성 검증에 일관성을 확보할 수 있을 것으로 판단된다. 이와 함께 균열제어를 위한 두 가지 모델을 제안하였다.

스미어 발생지반에서 배수재 간격비에 따른 압밀거동 분석 (Analysis on the Consolidation Behavior of the Smeared Soil Considering Vertical Drain Spacing)

  • 강희웅;윤찬영;정영훈
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 추계 학술발표회 2차
    • /
    • pp.141-146
    • /
    • 2010
  • To investigate the effect of drainage spacing and smear on the rate of consolidation, a large consolidation chamber and mandrel insertion device were developed. After the occurrence of smear by installation of sand drain, model ground was consolidated in either overconsolidated or normally consolidated state. As smear effect increases and thus drain spacing decreases, total settlement increase in overconsolidated state but has no effect in normally consolidated state. Efficiency of vertical drain decreases and consequently consolidation time increases in all tests as smear effect becomes significant.

  • PDF

축력이 철근콘크리트 휨부재의 거동과 평균 균열간격에 미치는 영향 (The Effect of Axial Force on the Behavior and Average Crack Spacing of Reinforced Concrete Flexural Member)

  • 양은익;김진근;이성태;임전사랑
    • 콘크리트학회지
    • /
    • 제9권4호
    • /
    • pp.207-214
    • /
    • 1997
  • 본 연구는변형구속에 의해 생기는 축력이 철근콘크리트 휨부재의 역학적 거동과 평균 균열간격에 미치는 영향을 검토하기 위해 수행되었다. 이를 위하여 변형구속 및 무구속 조건하에서의 휨강도와 휨강성을 실험으로 구하였으며, 또한 축방향 구속을 받는 휨부재의 평균 균열간격을 예측하는 식을 제안하였다.

Hydrodynamic Responses of Spar Hull with Single and Double Heave Plates in Random Waves

  • Sudhakar, S.;Nallayarasu, S.
    • International Journal of Ocean System Engineering
    • /
    • 제4권1호
    • /
    • pp.1-18
    • /
    • 2014
  • Heave plates have been widely used to enhance viscous damping and thus reduces the heave response of Spar platforms. Single heave plate attached to the keel of the Spar has been reported in literature (Tao and Cai 2004). The effect of double heave plates on hydrodynamic response in random waves has been investigated in this study. The influence of relative spacing $L_d/D_d$ ($D_d$-the diameter of the heave plate) on the hydrodynamic response in random waves has been simulated in wave basin experiments and numerical model. The experimental investigation has been carried out using 1:100 scale model of Spar with double heave plates in random waves for different relative spacing and varying wave period. The influence of relative spacing between the heave plates on the motion responses of Spar are evaluated and presented. Numerical investigation has been carried out to investigate effect of relative spacing on hydrodynamic characteristics such as heave added mass and hydrodynamic responses. The measured results were compared with those obtained from numerical simulation and found to be in good agreement. Experimental and numerical simulation shows that the damping coefficient and added mass does not increase for relative spacing of 0.4 and the effect greater than relative spacing on significant heave response is insignificant.