• Title/Summary/Keyword: spacing behavior

Search Result 444, Processing Time 0.024 seconds

An Evaluation of Pullout Behavior Characteristics of the Steel Strip Reinforcement Bolted with Braced Angles (버팀재 볼트 접합형 강재스트립 보강재의 인발거동특성 평가)

  • 김홍택;방윤경;정중섭;박시삼;김현조
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.419-426
    • /
    • 2002
  • In this study, the steel strip reinforcement bolted with braced angles is displayed skin friction resistance as well as passive resistance through existing the steel strip reinforcement. To understand pullout behavior characteristics, friction effects between soil and reinforcement are evaluated with the width of reinforcement, magnitude of surcharge, and existence of passive resistance member through laboratory pullout test. To analyze interference effects for passive resistance member, various tests are carried on case that the number, the location, and the spacing of braced angles are different. Using this test result, pullout resistance factor is calculated to consider location of braced angles and degree of interference for spacing ratio.

  • PDF

Influence of Slip Angle on Abrasion Behavior of NR/BR Vulcanizates

  • Eunji Chae;Sung-Seen Choi
    • Elastomers and Composites
    • /
    • v.58 no.1
    • /
    • pp.17-25
    • /
    • 2023
  • Abrasion tests of model tire tread compounds (NR and NR/BR blend compounds) were performed at different slip angles (1° and 7°) using a laboratory abrasion tester. The abrasion behavior was investigated by analyzing the worn surface and wear particles. The abrasion spacing formed on the specimen worn at the large slip angle of 7° was significantly narrower than that at the small slip angle of 1°, while the abrasion depth for the specimen worn at 7° was lower than that at 1°. The abrasion spacing and depth tended to be narrower and lower, respectively, as the BR content increased. The abrasion patterns were clearly visible on the outside of the specimen for the slip angle of 1° but not for 7°. The wear particles had a rough surface and there were numerous micro-bumps. It was found that the crosslink density affected the abrasion patterns and morphologies of the wear particles.

Experimental Study on Bond Behavior of 1/12.5 Scale Model of the Steel Tubular Joint Connection Subjected to Compressive Loads (압축하중을 받는 1/12.5 축소모형 강관 연결부의 부착전단 거동에 대한 실험적 연구)

  • Hongseob Oh
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.3
    • /
    • pp.19-26
    • /
    • 2024
  • In this study, the compressive behavior of a 1/12.5 scale model of a wind tower support structure connection was experimentally analyzed. A high-performance cementitious grout with a compressive strength of 140 MPa was used to fill the connection, and experiments were conducted with shear key spacing, the shape, and connection length as variables. When the number of shear keys in the connection is the same, the smaller the spacing of the shear keys than the length of the connection, the higher the shear strength, and for the same spacing and connection length, the higher the height of the shear keys, the higher the strength. In addition, it was found that the strength showed a linear behaviour until the connection slip reached 1.0 mm, and it reached the maximum strength at 7.0 mm connection slip showing a non-linear behaviour as the load increased. It was found that the failure mode changed from interfacial shear failure to grout failure as the strength increased according to the shape and spacing of the shear key, and brittle failure did not occur due to steel fibers.

Effect of baffle parameters on heat transfer in shell-and-tube heat exchangers (원통다관형 열교환기에서 배플인자가 열전달에 미치는 영향)

  • Lee, Sang-Cheon;Jo, Yeong-U;Nam, Sang-Cheol
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.1
    • /
    • pp.185-194
    • /
    • 1997
  • An experimental study has been performed on the effect of baffle parameters on shell -side heat transfer in a conventional shell-and-tube heat exchanger. The baffle spacing distance and the number of baffle were varied to investigate the behavior of unequal baffle spacing correction factor which is appeared in the Bell Delaware method for prediction of the shell-side heat transfer coefficient. It was obvious that heat duties obtained from the experiment significantly deviated from those calculated by the conventional Bell-Delaware method. A new correlation of the unequal baffle spacing correction factor was developed. It was shown that the new correlation improves the accuracy of the Bell-Delaware method considerably. This result may induce the use of the Bell-Delaware method in developing a computer software for design of shell-and-tube heat exchangers.

Synthesis and Characterization of Organophilic Montmorillonites Modified with Various Alkyl Substituents (다양한 구조의 알킬기를 함유한 친유성 몬모릴로나이트의 제조 및 특성 연구)

  • 심종천;김용운;원종찬;최길영;이미혜
    • Polymer(Korea)
    • /
    • v.27 no.2
    • /
    • pp.129-134
    • /
    • 2003
  • It has been known that the intercalation of long alkyl chains in montmorillonites (MMT) increased the hydrophobicity as well as gallery spacing of UT, which has influenced on the exfoliation behavior of various polymers. A series of organophilic MMTs were synthesized from the water/isopropyl alcohol solution of MMT with ammonium salts of various alkyl amines. The properties of obtained MMTs such as thermal decomposition temperature, gallery spacing as well as hydrophobic property were investigated. The X-ray diffraction experiments on organophilic montmorillonite demonstrated that the increase of length of alkyl substituent resulted in increase in the spacing between silicate layers, which was ranged from 13.1 to 29.4 $\AA$. On the other hand, introduction of (di-, tri-) alkyl substituents in ammonium salts decreased water absorption of organophiplic montmorillonite to 2.7%.

Experimental Study on Consolidation Behavior of the Smeared Soil for Various Spacing Ratios of Vertical Drains (다양한 배수재 간격비에 따른 스미어 발생 지반의 압밀거동에 대한 실험적 연구)

  • Yune, Chan-Young;Kang, Hee-Woong;Jung, Young-Hoon
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.4
    • /
    • pp.77-87
    • /
    • 2011
  • To investigate the effect of drainage spacing and smear on the rate of consolidation and the efficiency of vertical drain method, a series of consolidation tests with a large consolidation chamber and special equipment for inserting mandrels were conducted. As the smeared region increases, total settlement in over-consolidated clay increases whereas apparent change in settlement does not appear in normally consolidated clay. Vertical drain generally accelerates the rate of consolidation, while it could also deteriorate the efficiency of vertical drain method even for the decreasing drainage length and spacing ratio.

Prediction of ECC tensile stress-strain curves based on modified fiber bridging relations considering fiber distribution characteristics

  • Lee, Bang Yeon;Kim, Jin-Keun;Kim, Yun Yong
    • Computers and Concrete
    • /
    • v.7 no.5
    • /
    • pp.455-468
    • /
    • 2010
  • This paper presents a prediction and simulation method of tensile stress-strain curves of Engineered Cementitious Composites (ECC). For this purpose, the bridging stress and crack opening relations were obtained by the fiber bridging constitutive law which is quantitatively able to consider the fiber distribution characteristics. And then, a multi-linear model is employed for a simplification of the bridging stress and crack opening relation. In addition, to account the variability of material properties, randomly distributed properties drawn from a normal distribution with 95% confidence are assigned to each element which is determined on the basis of crack spacing. To consider the variation of crack spacing, randomly distributed crack spacing is drawn from the probability density function of fiber inclined angle calculated based on sectional image analysis. An equation for calculation of the crack spacing that takes into quantitative consideration the dimensions and fiber distribution was also derived. Subsequently, a series of simulations of ECC tensile stress-strain curves was performed. The simulation results exhibit obvious strain hardening behavior associated with multiple cracking, which correspond well with test results.

Experimental study on circular CFST short columns with intermittently welded stiffeners

  • Thomas, Job;Sandeep, T.N.
    • Steel and Composite Structures
    • /
    • v.29 no.5
    • /
    • pp.659-667
    • /
    • 2018
  • This paper deals with the experimental study on strength the strength and deformation characteristics of short circular Concrete Filled Steel Tube (CFST) columns. Effect of vertical stiffeners on the behavior of the column is studied under axial compressive loading. Intermittently welded vertical stiffeners are used to strengthen the tubes. Stiffeners are attached to the inner surface of tube by welding through pre drilled holes on the tube. The variable of the study is the spacing of the weld between stiffeners and circular tube. A total of 5 specimens with different weld spacing (60 mm, 75 mm, 100 mm, 150 mm and 350 mm) were prepared and tested. Short CFST columns of height 350 mm, outer tube diameter of 165 mm and thickness of 4.5 mm were used in the study. Concrete of cube compressive strength $41N/mm^2$ and steel tubes with yield strength $310N/mm^2$ are adopted. The test results indicate that the strength and deformation of the circular CFST column is found to be significantly influenced by the weld spacing. The ultimate axial load carrying capacity was found to increase by 11% when the spacing of weld is reduced from 350 mm to 60 mm. The vertical stiffeners are found to effective in enhancing the initial stiffness and ductility of CFST columns. The prediction models were developed for strength and deformation of CFST columns. The prediction is found to be in good agreement with the corresponding test data.

The Effect of Re addition and Solidification Rate on the Directional Solidification Behavior of Ni-Al Alloy (Ni-Al 합금의 일방향 응고 거동에 미치는 Re 및 응고속도의 영향)

  • Lee, Man-Gil;Yoo, Young-Soo;Jo, Chang-Yong;Lee, Je-Hyun
    • Journal of Korea Foundry Society
    • /
    • v.27 no.6
    • /
    • pp.243-249
    • /
    • 2007
  • The effect of Re addition and solidification rate on the directional solidification behavior of Ni-Al model alloy has been investigated. Directional solidification (DS) were carried out using the modified Bridgman furnace with various solidification rates. The solid/liquid interface during directional solidification was preserved by quenching the specimen after the desired volume fraction of original liquid was solidified. The equilibrium partition coefficients of Al and Re Were estimated by measuring the compositions at the quenched solid/liquid interface. Then, the effect of Re addition on the elemental segregation behavior was carefully analyzed. The differential scanning calorimetry results showed that the Re addition results in increased ${\gamma}'$ solvus and freezing range of the alloy. It was also shown that the primary dendrite arm spacing gradually decreases with increasing the Re content, while the secondary dendrite arm spacing appears to be independent on the Re content. The compositional analyses clearly revealed that the segregation of Al increased with increasing the Re content and solidification rate, while that of Re was found to be independent on the solidification rate in the range of $10{\sim}100{\mu}m/s$ due to its sluggish diffusion rate in the Ni solid solution.

A Study on the Behavior of Cross Beams in Two-I girder steel bridges (2개의 거더가 적용된 강플레이트 거더교의 가로보 거동에 관한 연구)

  • Kyung, Kab Soo;Kwon, Soon Chole;Park, Kyung Jin;Jeon, Jun Chang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3A
    • /
    • pp.523-532
    • /
    • 2006
  • It is thought that the suggestion of efficient and rational design guideline based on the behavior evaluation of bridge structure system the included cross beam is necessary for the construction efficiency of two-I girder steel bridges. Therefore, in this study, the effects of influence parameters are investigated by the behavior analyses of the bridges, in which the influence parameters are location, spacing and rigidity of the cross beam. For this study, the existed two-I girder steel bridges firstly were selected with the model of case study and the FE analyses for some case models were performed to estimate the action of the cross beam in the bridge. From the analyses, it was estimated that if it consider local stress and load distribution of a floor system, shell and solid elements are compatible to modeling of the cross beams. Also, the efficient design guideline for the cross beam of two-I girder steel bridge was suggested from parameter studies used location, spacing and rigidity of the cross beam.