• Title/Summary/Keyword: spacecraft thermal analysis

Search Result 60, Processing Time 0.033 seconds

Spacecraft Radiator Design Optimization Approach of Combining Optimization Algorithm with Thermal Analysis (최적화알고리즘과 열해석을 통합한 위성방열판 설계의 최적화 방법에 관한 연구)

  • Kim, Hui-Kyung
    • Aerospace Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.24-29
    • /
    • 2013
  • A spacecraft radiator is a thermal control method to eject internally dissipated heat into the space generated from operation of unit boxes. The efficiency of thermal design may be improved by optimizing radiator design. In this paper, the optimization approach method of node-based radiator design was suggested which is to combine numerical thermal analysis with optimization algorithm. This method has meaning that it can be used practically to implement the spacecraft radiator design regardless of thermal analysis and optimization algorithm software and maintain the same basic concept of an ordinary radiator design approach based on node division of a thermal model. The overall analysis framework with thermal analysis and optimization algorithm would be presented.

Thermal Analysis of Spacecraft Propulsion System and its Validation

  • Han, Cho-Young;Park, Joon-Min
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.847-856
    • /
    • 2004
  • Heaters for the spacecraft propulsion system are sized to prevent propellant from catastrophic freezing. For this purpose, thermal mathematical model (TMM) of the propulsion system is developed. Calculation output is compared with the results obtained from thermal vacuum test in order to check the validity of TMM. Despite a little discrepancy between the two types of results, both of them are qualitatively compatible. It is concluded that the propulsion system heaters are correctly sized and TMM can be used as a thermal design tool for the spacecraft propulsion system.

광학탑재체 지지구조물 열지향오차 해석기법 연구

  • Kim, Kyung-Won;Kim, Jin-Hee;Rhee, Ju-Hun;Jin, Ik-Min
    • Aerospace Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.45-48
    • /
    • 2005
  • Study on the thermal pointing error analysis for optical bench was performed in this paper. Spacecraft FEM is necessary to conduct thermal pointing error analysis for optical bench. But generally during the preliminary design, exact spacecraft FEM does not exist. So the analysis method to predict thermal pointing error of spacecraft is necessary without exact spacecraft FEM. In this study, these analysis techniques are described.

  • PDF

Data Analysis of KOMPSAT Thermal Test in Simulated On-orbit Environment

  • Kim, Jeong-Soo;Chang, Young-Keun
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.1 no.2
    • /
    • pp.30-42
    • /
    • 2000
  • On-orbit thermal environment test of KOMPSAT was performed in early 1999. An analysis of the test data are addressed in this paper. For the thermal-environmental simulation of spacecraft bus, an artificial heating through the radiator zones and onto some critical heat-dissipating electronic boxes was made by Absorbed-heat Flux Method. Test data obtained in terms of temperature history were reduced into flight heater duty cycles and converted into the total electrical power required for spacecraft thermal control. Verification result of flight heaters dedicated to the bus thermal control is presented. Additionally, an exhaustive heating-control process for maintaining the spacecraft thermally safe and for realistic simulation of the orbital-thermal environment during the test are graphically shown. Qualitative suggestions to post-test model correlation are given in consequency of the analysis.

  • PDF

A Study of High-Power Dissipation Parts Modeling for Spacecraft PCB Thermal Analysis (위성 PCB 열해석을 위한 고 전력소산 소자의 모델링 연구)

  • 이미현;장영근;김동운
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.6
    • /
    • pp.42-50
    • /
    • 2006
  • This paper addresses the optimized thermal modeling methodology for spacecraft board level thermal analysis. A direct thermal modeling of external and internal structure of active parts which have high power dissipation is newly proposed, based on conventional plate modeling for Printed Circuit Board(PCB). The parts thermal modeling results were compared with other generic methodologies and verified by thermal vacuum test. This parts thermal modeling was directly applied to thermal analysis of CS(Communication Subsystem) board of HAUSAT-2 small satellite. As a result, it was confirmed that the parts thermal modeling can complement other conventional modeling methodologies. A parts thermal modeling is very effective for thermal control design, since the existing thermal problems can be solved at the parts level in advance.

ASCENT THERMAL ANALYSIS OF FAIRING OF SPACE LAUNCH VEHICLE

  • Choi Sang-Ho;Kim Seong-Lyong;Kim Insun
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.10b
    • /
    • pp.239-242
    • /
    • 2004
  • The fairing of the launch vehicles has a role of protecting the spacecraft from outer thermal, acoustical, and mechanical loads during flight. Among them, the thermal load is analyzed in the present study. The ascent thermal analyses include aerodynamic heating rate on every point of the fairing, heat transfer through the fairing and spacecraft, and the final temperature during ascent flight phase. A design code based on theoretical/experimental database is applied to calculate the aerodynamic heating rate, and a thermal math program, SINDA/Fluint, is considered for conductive heat transfer of the fairing. The results show that the present design satisfies the allowing temperature of the structure. Another important thermal problem, pyro explosive fairing separation device, is calculated because the pyro system is very sensitive to the temperature. The results also satisfies the pyro thermal condition.

  • PDF

Sensitivity Analysis of Contact Resistance for Thermal Analysis of Spacecraft (위성 열해석을 위한 접촉열저항의 민감도 해석)

  • Han, Cho-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.7
    • /
    • pp.117-125
    • /
    • 2004
  • Performing the sensitivity analysis of contact conduction on the basis of the thermal model already established, the study of thermal design is accomplished for the preparation of the future changes of mechanical interface design. A relatively simple thermal model is taken into consideration for the convenience of the analysis. A variety of the spacecraft bus voltages and the contact resistances are tried. As a consequence, when the mechanical interface condition is changed at the same module, the successful thermal design could be achieved if we design the heater to have sufficiently large power with reference to the heritage of contact resistance.

Thermal Flutter Analysis of Spacecraft Solar Array Structure (위성체 태양전지판 구조물의 열적 플러터 해석)

  • Yoon, Il-Soung;Kang, Ho-Shik;Jeong, Nam-Heui;Song, Oh-Seop
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.7
    • /
    • pp.26-32
    • /
    • 2005
  • In this paper, the vibration response of the spacecraft solar array is investigated. The solar array model consists of composite thin walled beam and solar blanket, spreader bar. The composite thin walled beam incorporates a number of nonclassical effects of transverse shear, primary and secondary warping, rotary inertia and anisotropy of constituent materials. The solar blanket is a membrane subjected to uniform tension in the z direction. The spreader bar is a rigid member. A coupled thermal structure analysis that includes the effects of structural deformations on heating and temperature gradient is investigated. A stability criterion given in parameters for establishes the conditions for thermal flutter.

Thermal Design and Analysis for Space Imaging Sensor on LEO (지구 저궤도에서 운용되는 영상센서를 위한 열설계 및 열해석)

  • Shin, So-Min;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.5
    • /
    • pp.474-480
    • /
    • 2011
  • Space Imaging Sensor operated on LEO is affected from the Earth IR and Albedo as well as the Sun Radiation. The Imaging Sensor exposed to extreme environment needs thermal control subsystem to be maintained in operating/non-operating allowable temperature. Generally, units are periodically dissipated on spacecraft panel, which is designed as radiator. Because thermal design of the imaging sensor inside a spacecraft is isolated, heat pipes connected to radiators on the panel efficiently transfer dissipation of the units. First of all, preliminary thermal design of radiating area and heater power is performed through steady energy balance equation. Based on preliminary thermal design, on-orbit thermal analysis is calculated by SINDA, so calculation for thermal design could be easy and rapid. Radiators are designed to rib-type in order to maintain radiating performance and reduce mass. After on-orbit thermal analysis, thermal requirements for Space Imaging Sensor are verified.

A STUDY ON THERMAL MODEL REDUCTION AND DYNAMIC RESPONSE (열해석 모델 간략화 및 동적특성에 관한 연구)

  • Jun, Hyoung Yoll;Kim, Jung-Hoon
    • Journal of computational fluids engineering
    • /
    • v.19 no.4
    • /
    • pp.37-44
    • /
    • 2014
  • A detailed satellite panel thermal model composed of more than thousands nodes can not be directly integrated into a spacecraft thermal model due to its node size and the limitation of commercial satellite thermal analysis programs. For the integration of the panel into the satellite thermal model, a reduced thermal model having proper accuracy is required. A thermal model reduction method was developed and validated by using a geostationary satellite panel. The temperature differences of main components between the detailed and the reduced thermal model were less than $1^{\circ}C$ in steady state analysis. Also, the dynamic responses of the detailed and the reduced thermal model show very similar trends. Thus, the developed reduction method can be applicable to actual satellite thermal design and analysis with resonable accuracy and convenience.