• 제목/요약/키워드: spacecraft

검색결과 1,061건 처리시간 0.027초

The study on source regions of solar energetic particles detected by widely separated multiple spacecraft

  • 박진혜;;;문용재
    • 천문학회보
    • /
    • 제37권2호
    • /
    • pp.110.1-110.1
    • /
    • 2012
  • We studied the source regions of 12 solar energetic particle (SEP) events seen between 2010 August and 2012 January at STEREO-A, B and ACE, when the two STEREO spacecraft were separated by about $180^{\circ}$. All events were associated with strong flares (C1 - X6) and fast coronal mass ejections (CMEs) accompanied by type II radio bursts. We have determined the arrival times of the SEP events at the three spacecraft. EUV waves observed in $195{\AA}$ and $193{\AA}$ channels of STEREO and SDO/AIA are tracked across the Sun and the arrival time of the EUV wave at the photospheric source of open field lines extending to the spacecraft connection points at 2.5 Rsun estimated. We found 7 events with flux enhancements in all spacecraft and 4 in two spacecraft. Most events came from a single source. The results show that magnetic field connections between source regions and the spacecraft play an important role in abrupt flux enhancements. In the most cases, EUV waves at the Sun are associated with a wide longitudinal spread of the SEPs.

  • PDF

Observability Analysis of Two Spacecraft System Using Relative Line of Sight Vector Measurements

  • Jo-Ryeong Im;Seung-U Lee;Hak Jeong Kim;Ju-Jin Lee
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2004년도 한국우주과학회보 제13권1호
    • /
    • pp.66-66
    • /
    • 2004
  • Observability of two spacecraft system is considered with relative line-of-sight vector measurements between two spacecraft system for autonomous navigation using the linear observability analysis. First, the dynamical equations and measurement models are introduced, and the basic assumption of attitude knowledge for one of two spacecrafts is explained. Then, we introduce a pair of nominal orbits of two spacecraft system, and the observability analysis for the nominal orbits is presented with the available measurements (for the numerical observability analysis). (omitted)

  • PDF

3D DISPLAY OF SPACECRAFT DYNAMICS USING REAL TELEMETRY

  • Lee, Sang-Uk;Cho, Sung-Ki;Kim, Jae-Hoon
    • Journal of Astronomy and Space Sciences
    • /
    • 제19권4호
    • /
    • pp.403-408
    • /
    • 2002
  • 3D display of spacecraft motion by using telemetry data received from satellite in real-time is described. Telemetry data are converted to the appropriate form for 3-D display by the real-time preprocessor. Stored playback telemetry data also can be processed for the display. 3D display of spacecraft motion by using real telemetry data provides intuitive comprehension of spacecraft dynamics.

Dynamic Modeling and Verification of Litton's Space Inertial Reference Unit(SIRU) (ICCAS 2003)

  • Choi, Hong-Taek;Oh, Shi-Hwan;Rhee, Seung-Wu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1211-1215
    • /
    • 2003
  • Accurate mathematical models of spacecraft components are an essential of spacecraft attitude control system design, analysis and simulation. Gyro is one of the most important spacecraft components used for attitude propagation and control. Gyro errors may seriously degrade the accuracy of the calculated spacecraft angular rate and of attitude estimates due to inherent drift and bias errors. In order to validate this model, nominal case simulation has been performed and compared for the low range mode and high range mode, respectively. In this paper, a mathematical model of gyro containing the relationships for predicting spacecraft angular rate and disturbances is proposed.

  • PDF

Sliding Mode Attitude Control for Momentum-Biased Spacecraft

  • Bang, Hyo-Choong;Loh, Young-Hwan
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제3권2호
    • /
    • pp.13-23
    • /
    • 2002
  • In this paper, we present a sliding mode control strategy for the re-orientation maneuver of rigid spacecraft containing rotating wheels. The wheels are considered as internal devices, and external inputs are employed for generation of control commands. The formulation is developed for a general case while particular example is applied to pitch bias momentum spacecraft with a single momentum wheel. The resultant control commands are used to take the gyroscopic effects into account which are caused by the rotating wheels. The controller designed demonstrates that the nutational motion of the pitch bias momentum spacecraft is effectively controlled. It is also assumed that the external control torque device is of on-off nature, and pulse width modulation technique is applied to construct proper control torque history.

Robust and Optimal Attitude Control Law Design for Spacecraft with Inertia Uncertainties

  • Park, Yon-Mook;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제3권2호
    • /
    • pp.1-12
    • /
    • 2002
  • This paper considers the robust and optimal three-axis attitude stabilization of rigid spacecraft with inertia uncertainties. The attitude motion of rigid spacecraft described in terms of either the Cayley-Rodrigues parameters or the Modified Rodrigues parameters is considered. A class of robust nonlinear control laws with relaxed feedback gain structures is proposed for attitude stabilization of rigid spacecraft with inertia uncertainties. Global asymptotic stability of the proposed control laws is shown by using the LaSalle Invariance Principle. The optimality properties of the proposed control laws are also investigated by using the Hamilton-Jacobi theory. A numerical example is given to illustrate the theoretical results presented in this paper.

Nonlinear Nutation Control of Spacecraft Using Two Momentum Wheels

  • Seo, In Ho;Kim, Jong Myeong;Leeghim, Henzeh
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제18권1호
    • /
    • pp.99-107
    • /
    • 2017
  • In this work, the nutation control of rigid spacecraft with only two momentum wheels is addressed by applying the feedback linearization technique. In this strategy, the primary performance index is to regulate the nutational angle by the momentum control of wheels. The spacecraft attitude equations of motion are transformed to a general linearized form by feedback linearization technique, including a guaranteed control law promising the internal dynamics stability to accomplish the nutation angle small. It is proven that the configuration of inertia properties plays a key role in analyzing spacecraft energy level. The behavior of the momentum wheels is also studied analytically and numerically. Finally, the effectiveness of the proposed nonlinear control law for the momentum transfer is verified by conducting numerical simulations.

A Robust Control Approach for Maneuvering a Flexible Spacecraft

  • Sung, Yoon-Gyeoung;Lee, Jea-Won;Kim, Hunmo
    • Journal of Mechanical Science and Technology
    • /
    • 제15권2호
    • /
    • pp.143-151
    • /
    • 2001
  • In the paper, a robust control mechanism is presented to maneuver a flexible spacecraft with the deflection reduction during large slewing operation at the same time. For deflection reduction and maneuvering of the flexible spacecraft, a control mechanism is developed with the application of stochastic optimal sliding-mode control, a linear tracking model and input shaping technique. A start-coast-stop maneuver is employed as a slewing strategy. It is shown that the control mechanism with he strategic maneuver results in better performance and is more efficient than rigid-body-like maneuver, by applying to the Spacecraft Control Laboratory Experiment (SCOLE) system in a space environment.

  • PDF

MINIMUM BATTERY ENERGY IN THE SURVIVAL MODE FOR THE COMS SPACECRAFT

  • Koo, Ja-Chun;Ra, Sung-Woong
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2008년도 International Symposium on Remote Sensing
    • /
    • pp.96-99
    • /
    • 2008
  • The MRE (Monitoring Reconfiguration Electronics) board included inside the SCU (Spacecraft Computer Unit) in the COMS (Communication, Ocean and Meteorological Satellite) spacecraft is used to monitor the battery voltage and to detect a battery under voltage (low battery capacity) or a battery overvoltage (overcharge). In case of alarm detection, a reconfiguration is initiated by the MRE board. The MRE configures the overall spacecraft in the survival mode to protect the Li-Ion (lithium ion) battery from overcharge and over discharge. For the EPS (Electrical Power Subsystem) point of view, the survival mode can be trigged from hardware wired thresholds. The aim of this paper to provide and to justify the low and high threshold levels which are associated to the MRE battery voltage monitoring. The MRE trig guarantees minimum battery energy to available for the required 48 hours autonomy duration of the spacecraft after MRE trig in the survival mode.

  • PDF

Analysis of Field-Aligned Currents in the High-Altitude Nightside Auroral Region: Cluster Observation

  • Shin, Youra;Lee, Ensang;Lee, Jae-Jin
    • Journal of Astronomy and Space Sciences
    • /
    • 제36권1호
    • /
    • pp.1-9
    • /
    • 2019
  • In this paper we present analysis of current density when the Cluster spacecraft pass the nightside auroral region at about $4-5R_E$ from the center of Earth. The analysis is made when the inter-spacecraft separation is within 200 km, which allows all four spacecraft to be situated inside the same current sheet. On 22 February 2002, two field-aligned current (FAC) events were observed in both the southern and the northern hemispheres. The FACs were calculated with magnetic field data obtained by the four spacecraft using the Curlometer method. The scales of the FACs along the spacecraft trajectory and the magnitudes were hundreds of kilometers and tens of $nA/m^2$, respectively, and both events were mapped to the auroral region in the ionosphere. We also examined reliability of the results with some parameters, and found that our results are adequately comparable with other studies. Nevertheless, some limitations that decrease the accuracy of current estimation exist.