본 논문에서는 self-organizing map(SOM)과 grassfire 기법을 이용한 계산 효율적인 컬러 영상 분할 방법을 제안한다. SOM에서 출력 뉴런 수를 축소하고 학습에 사용하는 입력 데이터를 줄임으로써 실행 시간을 단축 시켰다. 입력 영상을 CIE $L^*u^*v^*$ 컬러 공간으로 변환하고 3개의 입력 뉴런과 $4{\times}4$ 또는 $3{\times}3$ 출력 뉴런 구조의 SOM을 이용해 학습한다. 학습 완료 후 입력 영상의 픽셀에 대응하는 출력 값을 구하고 grassfire 기법을 이용해 지역적으로 인접하고 출력 값이 동일한 픽셀들을 하나의 영역으로 결합한다. 다양한 영상을 이용한 실험을 통해 제안한 방법이 컬러 영상 분할에서 기존의 방법에 비해 좋은 결과를 얻을 수 있음을 확인하였다.
The 8th International Conference on Construction Engineering and Project Management
/
pp.399-408
/
2020
The construction industry is suffering from aging workers, frequent accidents, as well as low productivity. With the rapid development of information technologies in recent years, automatic construction, especially automatic cranes, is regarded as a promising solution for the above problems and attracting more and more attention. However, in practice, limited by the complexity and dynamics of construction environment, manual inspection which is time-consuming and error-prone is still the only way to recognize the search object for the operation of crane. To solve this problem, an image-processing-based automated object recognition approach is proposed in this paper, which is a fusion of Convolutional-Neutral-Network (CNN)-based and traditional object detections. The search object is firstly extracted from the background by the trained Faster R-CNN. And then through a series of image processing including Canny, Hough and Endpoints clustering analysis, the vertices of the search object can be determined to locate it in 3D space uniquely. Finally, the features (e.g., centroid coordinate, size, and color) of the search object are extracted for further recognition. The approach presented in this paper was implemented in OpenCV, and the prototype was written in Microsoft Visual C++. This proposed approach shows great potential for the automatic operation of crane. Further researches and more extensive field experiments will follow in the future.
본 논문은 Wavelet 변환을 이용한 실시간 얼굴 영역 검출을 제안하였으며, 계산의 효율성과 검출 성능을 동시에 만족시키는 강인한 검출 알고리즘을 제안하였다. 검출된 얼굴 영상은 주성분 분석을 통해 저차원 얼굴 심볼로 구성하여 얼굴을 인식한다. 제안된 방법은 기존의 기하학적인 특징 기반 방법이나 외관기반 방법의 비해 많은 계산 량이 요구 되지 않고 최소한의 정보를 사용하고도 높은 인식률을 유지 할 수 있기에 실시간 시스템 구축에 매우 적합하다. 또한 얼굴 인식 시 발생하는 잘못된 인식이나 인식 오차를 줄이기 위해 고유 공간상에 투영된 모델 특징 값을 군집화 알고리즘을 통해 특정한 기호로 구성하여 은닉마르코프 모델의 입력 기호로 사용하였다. 이렇게 함으로써 임의의 입력 얼굴은 확률 값이 가장 높은 해당 얼굴 모델로 인식하게 된다. 실험 결과 기존의 방식인 Euclidean과 Mahananobis방법 보다 제안한 방법이 잘못된 매칭이나 매칭 실패에서 우수한 인식 성능을 보였다.
In this paper, we introduce a new Fuzzy Polynomial Neural Networks (FPNNS)-like structure whose neuron is based on the Fuzzy Set-based Fuzzy Inference System (FS-FIS) and is different from that of FPNNS based on the Fuzzy relation-based Fuzzy Inference System (FR-FIS) and discuss the ability of the new FPNNS-like structure named Fuzzy Set-based Polynomial Neural Networks (FSPNN). The premise parts of their fuzzy rules are not identical, while the consequent parts of the both Networks (such as FPNN and FSPNN) are identical. This difference results from the angle of a viewpoint of partition of input space of system. In other word, from a point of view of FS-FIS, the input variables are mutually independent under input space of system, while from a viewpoint of FR-FIS they are related each other. The proposed design procedure for networks architecture involves the selection of appropriate nodes with specific local characteristics such as the number of input variables, the order of the polynomial that is constant, linear, quadratic, or modified quadratic functions being viewed as the consequent part of fuzzy rules, and a collection of the specific subset of input variables. On the parameter optimization phase, we adopt Information Granulation (IC) based on HCM clustering algorithm and a standard least square method-based learning. Through the consecutive process of such structural and parametric optimization, an optimized and flexible fuzzy neural network is generated in a dynamic fashion. To evaluate the performance of the genetically optimized FSPNN (gFSPNN), the model is experimented with using the time series dataset of gas furnace process.
In this study, Polynomial Radial Basis Function Neural Network(pRBFNN) based on Fuzzy Inference System is designed and its parameters such as learning rate, momentum coefficient, and distributed weight (width of RBF) are optimized by means of Particle Swarm Optimization. The proposed model can be expressed as three functional module that consists of condition part, conclusion part, and inference part in the viewpoint of fuzzy rule formed in 'If-then'. In the condition part of pRBFNN as a fuzzy rule, input space is partitioned by defining kernel functions (RBFs). Here, the structure of kernel functions, namely, RBF is generated from HCM clustering algorithm. We use Gaussian type and Inverse multiquadratic type as a RBF. Besides these types of RBF, Conic RBF is also proposed and used as a kernel function. Also, in order to reflect the characteristic of dataset when partitioning input space, we consider the width of RBF defined by standard deviation of dataset. In the conclusion part, the connection weights of pRBFNN are represented as a polynomial which is the extended structure of the general RBF neural network with constant as a connection weights. Finally, the output of model is decided by the fuzzy inference of the inference part of pRBFNN. In order to evaluate the proposed model, nonlinear function with 2 inputs, waster water dataset and gas furnace time series dataset are used and the results of pRBFNN are compared with some previous models. Approximation as well as generalization abilities are discussed with these results.
과학기술 수용자는 과학기술 변화과정을 결정하는 중요한 이해관계자이다. 하지만 이들이 과학기술이슈에 대해 어떤 생각을 가지고 있는지 확인하는 기존의 방법들은 많은 노력과 시간이 필요한 것으로 알려져 왔다. 본 연구에서는 빅데이터 분석에 널리 사용되는 토픽모델링을 활용해 온라인 토론장에 게시된 글을 분석하여 한국인의 원자력발전에 대한 인식을 알아보고자 한다. 이것은 거시이슈들이 일반 과학기술 수용자 인식구조에 어떤 영향을 미치며, 변화된 인식구조의 지속성을 이해하는데 도움을 줄 수 있다. 빅데이터를 이용해 실시간으로 특정 과학기술이슈에 대한 일반인의 인식을 파악한다면, 과학기술 수용자(일반인)와 공급자(전문가) 집단 사이의 인식간극을 줄이는데 도움을 줄 수 있을 것으로 기대한다.
한강의 주요 14개 지류하천 유역의 수질오염원을 평가하고, 2007. 1~2009. 12의 하천 수질자료(14 data set)로 SPSS-17.0을 이용하여 하천별 수질 특성을 평가하였다. 시 공간변화에 대한 군집 분석을 실시한 결과 공간변화에 따라 4그룹으로 평가되었으며, 유역의 오염원 종류 및 밀도가 군집분류에 가장 큰 영향을 미치는 것으로 나타났다. 시간변화에 따라 여름에서 가을까지(7~10월)와 겨울에서 초여름까지(11~6월)의 2그룹으로 분류되어 강우와 기온 그리고 부영양화 현상이 군집화에 기여하는 것으로 평가되었다. 조사대상 하천의 수질오염 요인은 유기물질 영양염류 세균오염요인과 하천 내 물질대사요인으로(71~90%) 설명되었고, 계절에 따라 주요인(수질오염물질)은 변화하는 것으로 나타났다. 각 하천의 수질특성은 요인과 유역 오염원을 같이 평가하였을 때 유용한 결과를 얻을 수 있었다.
Feature-based similarity retrieval has become an important research issue in multimedia database systems. The features of multimedia data are useful for discriminating between multimedia objects (e 'g', documents, images, video, music score, etc.). For example, images are represented by their color histograms, texture vectors, and shape descriptors, and are usually high-dimensional data. The performance of conventional multidimensional data structures(e'g', R- Tree family, K-D-B tree, grid file, TV-tree) tends to deteriorate as the number of dimensions of feature vectors increases. The R*-tree is the most successful variant of the R-tree. In this paper, we propose a SOM-based R*-tree as a new indexing method for high-dimensional feature vectors.The SOM-based R*-tree combines SOM and R*-tree to achieve search performance more scalable to high dimensionalities. Self-Organizing Maps (SOMs) provide mapping from high-dimensional feature vectors onto a two dimensional space. The mapping preserves the topology of the feature vectors. The map is called a topological of the feature map, and preserves the mutual relationship (similarity) in the feature spaces of input data, clustering mutually similar feature vectors in neighboring nodes. Each node of the topological feature map holds a codebook vector. A best-matching-image-list. (BMIL) holds similar images that are closest to each codebook vector. In a topological feature map, there are empty nodes in which no image is classified. When we build an R*-tree, we use codebook vectors of topological feature map which eliminates the empty nodes that cause unnecessary disk access and degrade retrieval performance. We experimentally compare the retrieval time cost of a SOM-based R*-tree with that of an SOM and an R*-tree using color feature vectors extracted from 40, 000 images. The result show that the SOM-based R*-tree outperforms both the SOM and R*-tree due to the reduction of the number of nodes required to build R*-tree and retrieval time cost.
공간 데이터 웨어하우스는 공간정보를 주제 중심적이고 통합적이며 시간성을 가지는 비 휘발성 자료로 저장하여 의사결정을 효율적으로 지원하는 시스템이다. 이 시스템은 구축기와 공간 데이터 웨어하우스 서버로 구성되어 있다. 공간 데이터 웨어하우스 서버는 구축기에서 전송된 데이터를 적재하기 위해 사용자 서비스를 정지하고, 사용자의 빠른 응답시간을 위해 적재된 데이터로 색인을 구축한다. 색인 구축을 위한 기존 기법에는 벌크 삽입 기법과 색인 전송 기법이 있다. 벌크 삽입 기법은 색인을 구축하기 위한 클러스터링 비용이 크며 검색 성능도 떨어진다. 색인 전송 기법은 주기적인 소스 데이터의 변경을 지원하지 않는 문제점이 있다. 본 논문에서는 공간 데이터 웨어하우스에서의 부분 색인을 이용한 효율적인 색인 재구축 기법을 제안한다. 제안 기법은 부분 색인을 직접 전송, 기록하며 물리적 위치 정보를 예상하여 기록할 수 있는 효율적인 색인 재구축 기법이다. 구축기에서 추출된 데이터를 공간의 근접도가 아닌 색인의 구조에 맞게 클러스터링하며, 생성된 각 클러스터를 부분 색인으로 구성하여 페이지 단위로 전송한다. 공간 데이터 웨어하우스 서버에서는 전송된 부분 색인을 저장하기 위해 물리적으로 연속된 공간을 예약하고 예약된 공간에 부분 색인을 기록한다. 기록된 부분 색인을 공간 데이터 웨어하우스 서버의 기 구축된 색인에 삽입함으로써 색인 재구축을 위한 검색, 분할, 재조정 비용이 최소화된다.
교통사고는 화재와 더불어 도시지역에서 발생하는 인위적 재해 중 가장 높은 비중을 차지하고 있어서 보다 과학적인 원인분석과 더불어 다양한 예방대책수립이 필요하다. 본 연구에서는 지방중소도시인 진주시를 대상으로 2013년 발생한 교통사고 데이터를 교통사고 발생 원인별 분석, 발생 시간 및 계절적 특성분석 등 위치정보와 연계하여 시공간적 분포특성을 분석하고 토지이용계획에 따른 도시공간개발 특성과 연계함으로서 교통사고와의 공간적 상관성을 분석하였다. 그 결과 사고유형별 사고 분포특성을 보면 측면직각추돌(차 대 차), 횡단중사고(차 대 사람)가 밀도분석과 최근린분석에서 가장 군집도가 높았으며, 중심상업지역과 고밀도 주거지역, 공업지역을 연결하는 도로상에서 가장 많이 발생하는 특성을 보였다. 또한 피해상황에서는 인적피해가, 기상상태에서는 맑은 날이, 노면상태는 건조할 때가, 도로형태는 삼지교차로 일 때가 가장 높은 군집도를 보여주었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.