• Title/Summary/Keyword: space telescope

Search Result 943, Processing Time 0.054 seconds

Python Package Prototype for Adaptive Optics Modeling and Simulation

  • Choi, Seonghwan;Bang, Byungchae;Kim, Jihun;Jung, Gwanghee;Baek, Ji-Hye;Park, Jongyeob;Han, Jungyul;Kim, Yunjong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.53.3-53.3
    • /
    • 2021
  • Adaptive Optics (AO) was first studied in the field of astronomy, and its applications have been extended to the field of laser, microscopy, bio, medical, and free space laser communication. AO modelling and simulation are required throughout the system development process. It is necessary not only for proper design but also for performance verification after the final system is built. In KASI, we are trying to develop the AO Python Package for AO modelling and simulation. It includes modelling classes of atmosphere, telescope, Shack-Hartmann wavefront sensor, deformable mirror, which are the components for an AO system. It also includes the ability to simulate the entire AO system over time. It is being developed in the Super Eye Bridge project to develop a segmented mirror, an adaptive optics, and an emersion grating spectrograph, which are future telescope technologies. And it is planned to be used as a performance analysis system for several telescope projects in Korea.

  • PDF

Photometric observations of the Baptistina asteroid family

  • Kim, Myung-Jin;Choi, Young-Jun;Moon, Hong-Kyu;Erece, Orhan;Ries, Judit Gyorgyey;Kaynar, Suleyman;Kaplan, Murat;Eker, Zeki
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.84.1-84.1
    • /
    • 2015
  • The Baptistina family is one of the typical young asteroid families with an age estimated to be about 140-320 Myrs old (Masiero et al. 2012); considered to have not enough time to experience a significant collisional and dynamical evolution since it was formed. Therefore, it may offer a unique insight into spin rate distribution of relatively fresh fragments and physical mechanism of a family break-up event. Observations of the Baptistina family asteroids were conducted during 111 nights from 2013 Oct. to 2015 Feb., using 0.5 m- to 2 m- class telescopes at 6 observatories in the northern hemisphere. We used CCD cameras on the Sobaeksan Optical Astronomy Observatory (SOAO) 0.6 m telescope on Mt. Sobaek, Korea, the Lemmonsan Optical Astronomy Observatory (LOAO) 1.0 m telescope on Mt. Lemmon, USA, the Tubitak Ulusal Gozlemevi (TUG) 1.0 m telescope in Bakirlitepe, Turkey, the Bohyunsan Optical Astronomy Observatory (BOAO) 1.8 m telescope on Mt. Bohyun, Korea, the McDonald Observatory 2.1 m Otto Struve Telescope on Mt. Locke, USA, and the National Astronomical Research Institute of Thailand (NARIT) Observatory 2.4 m telescope on Mt. Doi Inthanon, Thailand. Here, we will present our preliminary results for lightcurve analyses of Baptistina family members.

  • PDF

Optic-axis Alignment and Performance Test of the Schwarzschild-Chang Off-axis Telescope

  • Park, Woojin;Pak, Soojong;Chang, Seunghyuk;Jeong, Byeongjoon;Lee, Kwang Jo;Kim, Yonghwan;Ji, Tae-Geun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.1
    • /
    • pp.56.4-57
    • /
    • 2017
  • The Schwarzschild-Chang off-axis telescope is a "linear astigmatism-free" confocal system. The telescope comprises two pieces of aluminum-alloy freeform mirrors that are fabricated with diamond turning machine (DTM) process. We designed optomechanical structures where optical components in the telescope system can be adjustable on a linear stage. Optomechanical deformation caused by the weight of system itself and its temperature variation is analyzed by the finite element analysis (FEA). The results show that the deformation is estimated in the tolerance range. For the optic-axis alignment of telescope system, three-point alignment (TPA) method is chosen. The TPA method uses three parallel lasers and a plane mirror. Point source images were taken from collimated light and field observation. The performance of optical system was tested by point spread function and aberration measurement of the point sources.

  • PDF

Optical Design of CubeSat Reflecting Telescope

  • Jin, Ho;Pak, Soojong;Kim, Sanghyuk;Kim, Youngju
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.110.1-110.1
    • /
    • 2014
  • The optics of Space telescope is one of the major parts of space mission used for imaging observation of astronomical targets and the Earth. These kinds of space mission have a bulky and complex opto-mechanics with a long optical tube, but there are attempts have been made to observe a target with a small satellite in many ways. In this paper, we describe an optical design of a reflecting telescope for use in a CubeSat mission. For this design, we adopt the off-axis segmented method of astronomical observation techniques based on the Ritchey-Chr$\acute{e}$tien type telescope. The primary mirror shape is a rectangle with dimensions of $8cm{\times}8cm$, and a secondary mirror has dimensions of $2.4cm{\times}4.1cm$. The focal ratio is 3 which can obtain a $0.3{\times}0.2$ degree diagonal angle in a $1280{\times}800$ CMOS color image sensor with a pixel size of $3{\mu}m{\times}3{\mu}m$. This optical design can capture a ${\sim}4km{\times}{\sim}2.3km$ area of the earth's surface at 700 km altitude operation. Based on this conceptual design, we will keep trying to study more for astronomical observation with Attitude control system.

  • PDF

Optomechanical Design and Structural Analysis of Linear Astigmatism Free - Three Mirror System Telescope for CubeSat and Unmanned Aerial Vehicle

  • Han, Jimin;Lee, Sunwoo;Park, Woojin;Moon, Bongkon;Kim, Geon Hee;Lee, Dae-Hee;Kim, Dae Wook;Pak, Soojong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.38.3-38.3
    • /
    • 2021
  • We are developing an optomechanical design of infrared telescope for the CubeSat and Unmanned Aerial Vehicle (UAV) which adapts the Linear Astigmatism Free- Three Mirror System in the confocal off-axis condition. The small entrance pupil (diameter of 40 mm) and the fast telescope (f-number of 1.9) can survey large areas. The telescope structure consists of three mirror modules and a sensor module, which are assembled on the base frame. The mirror structure has duplex layers to minimize a surface deformation and physical size of a mirror mount. All the optomechanical parts and three freeform mirrors are made from the same material, i.e., aluminum 6061-T6. The Coefficient of Thermal Expansion matching single material structure makes the imaging performance to be independent of the thermal expansion. We investigated structural characteristics against external loads through Finite Element Analysis. We confirmed the mirror surface distortion by the gravity and screw tightening, and the overall contraction/expansion following the external temperature environment change (from -30℃ to +30℃).

  • PDF

Auto-Guiding System for McDonald Otto Struve Telescope

  • Kim, Eun-Bin;Park, Won-Kee;Kim, Jin-Young;Oh, Hee-Young;Choi, Chang-Su;Pak, Soo-Jong;Im, Myung-Shin;Kuehne, John
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.38.1-38.1
    • /
    • 2010
  • McDonald 2.1m Otto Struve Telescope is located in the Davis Mountains, 450 miles west of Austin, Texas. The telescope was built in 1938, but it is still in demand today. CQUEAN (Camera for QUasar in Early uNiverse) will be attached on this telescope and perform Y-band imaging observations. Dynamics study of the telescope shows that tracking errors are 0.1 arcsec/100sec in declination direction and 0.4 arcsec/100sec in R.A. direction. In order to allow a long exposure (> a few minutes) of a target field, we are making auto-guiding system for the 2.1m telescope. The auto-guiding system of CQUEAN will be connected with TCS of the telescope. The expected number of stars on the CCD field (2.97 square arcminutes) is about 1.2 stars which are brighter than magnitude 17.5 in 2.97 square arcminutes. For more effective observation, we plan to implement moving mechanism in guiding system so that guide CCD camera can see wider off-axis fields.

  • PDF

VSOP: SPACE VLBI PROJECT

  • MAKOTO INOUE
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.419-420
    • /
    • 1996
  • The VLBI Space Observatory Program (VSOP) is a worldwide project of one radio telescope in space with many ground radio telescopes. The concerted space VLBI network enables us to reveal high resolution and high quality images of radio sources. The space radio telescope is anticipated to be launched in January/February 1997, and collaborative observations have been coordinated. The basic parameters of the system and present status are given.

  • PDF

Optical Setup for Full-Field Imaging Test of MATS Limb Telescope

  • Lee, Sunwoo;Hammar, Arvid;Park, Woojin;Chang, Seunghyuk;Pak, Soojong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.68.3-68.3
    • /
    • 2018
  • The MATS (Mesosphere Airglow / Aerosol Tomography Spectroscopy) satellite is a Swedish scientific microsatellite which Kyung Hee University participates in developing. The limb telescope of the MATS satellite is designed with linear astigmatism-free off axis optical configuration which allows wide field of view ($5.67^{\circ}{\times}0.91^{\circ}$). Here we present the full-field optical performance test setup that consists of a point source, a collimator, the limb telescope and a CCD (Charged Coupled Device). The incidence angle of the collimator was carefully controlled by the rotary stage under the limb telescope. The imaging tests represent expected results without dominant aberrations.

  • PDF

Exoplanet Science Cases with Small Telescope Network

  • Kang, Wonseok;Kim, Taewoo
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.60.2-60.2
    • /
    • 2019
  • Based on our experience on exoplanet transit observation, we propose the exoplanet science cases with Small Telescope Network. One is the follow-up observation for validation of exoplanet candidates. TESS(Transiting Exoplanet Survey Satellite) is pouring out exoplanet candidates in bright stars(V<15) on all the sky. Since Small Telescope Network will consist of 0.5-1m telescopes, we will expect to produce promising outcomes from the follow-up observation of bright candidates. Next is the transit time observation. By spectroscopy of space and large telescopes during transit event, it can be possible to find the bio signatures in exoplanet atmosphere. So, in terms of cost, it is critical to determine the exact time of transit event. In addition, detecting the variation of transit time can reveal another exoplanet and exomoon in the system. In order to determine the transit time and its variation, the accumulation of transit event data is more important than the quality of photometric data. We expect that it can be a challenging project of Small Telescope Network.

  • PDF