• Title/Summary/Keyword: space technology

Search Result 9,594, Processing Time 0.041 seconds

Influence of Electrical Aging on Space Charge Dynamics of Oil-Impregnated Paper Insulation under AC-DC Combined Voltages

  • Wang, Yan;Li, Jian;Wu, Sicheng;Sun, Peng
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1512-1519
    • /
    • 2013
  • Oil-impregnated paper is a major type of insulation used in oil-filled converter transformers for both traditional and new energy systems. This paper presents and analyzes the results of the experiment conducted on the electrical aging of oil-impregnated paper under AC-DC combined voltages using the pulsed electro-acoustic (PEA) technique. The formation and dynamics of space charge affected the performance of insulation material. The electrical aged oil-paper insulation was obtained through electrical aged experiments under the voltages. Based on the PEA technique, measurements were carried out when the oil-paper insulation system was subjected to different stressing and aging times. The space charge dynamics in the bulk of the oil-paper insulation system with different aging times were measured and analyzed. Characteristic parameters such as the total charge injection amount, the total charges of fast moving and slow moving, and the distortion factor of electric field were calculated and discussed. Results show that the longer electrical aging time, the more charges trapped in the bulk of aging sample. It leads to larger distortion factor of electric field in the bulk of aging samples and accelerate degradation of oil-paper insulation under AC-DC combined voltages.

Space-Time Quantization and Motion-Aligned Reconstruction for Block-Based Compressive Video Sensing

  • Li, Ran;Liu, Hongbing;He, Wei;Ma, Xingpo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.1
    • /
    • pp.321-340
    • /
    • 2016
  • The Compressive Video Sensing (CVS) is a useful technology for wireless systems requiring simple encoders but handling more complex decoders, and its rate-distortion performance is highly affected by the quantization of measurements and reconstruction of video frame, which motivates us to presents the Space-Time Quantization (ST-Q) and Motion-Aligned Reconstruction (MA-R) in this paper to both improve the performance of CVS system. The ST-Q removes the space-time redundancy in the measurement vector to reduce the amount of bits required to encode the video frame, and it also guarantees a low quantization error due to the fact that the high frequency of small values close to zero in the predictive residuals limits the intensity of quantizing noise. The MA-R constructs the Multi-Hypothesis (MH) matrix by selecting the temporal neighbors along the motion trajectory of current to-be-reconstructed block to improve the accuracy of prediction, and besides it reduces the computational complexity of motion estimation by the extraction of static area and 3-D Recursive Search (3DRS). Extensive experiments validate that the significant improvements is achieved by ST-Q in the rate-distortion as compared with the existing quantization methods, and the MA-R improves both the objective and the subjective quality of the reconstructed video frame. Combined with ST-Q and MA-R, the CVS system obtains a significant rate-distortion performance gain when compared with the existing CS-based video codecs.

Pumping speed of a sputter ion pump with a honeycomb anode cell structure (벌집형 셀 구조를 가지는 스퍼터 이온펌프의 성능 분석)

  • Ha, T.;Ahn, B.;Lee, D.;Kim, J.;Chung, S.
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.5
    • /
    • pp.451-457
    • /
    • 2006
  • We measured pumping speed of a sputter ion pump with a honeycomb anode cell structure and compared the result with that of another sputter ion pump with a typical cylindrical anode cell structure. A cell module with a honeycomb structure has no dead space which is about 10 % of the entire horizontal area of the cell module with a cylindrical structure. This dead space makes a little contribution to the ionization of the gas, so the pumping performance of the pump with dead space is expected to be lowered by the amount. From the experimental data we concluded that the honeycomb cell structure is superior to the cylindrical structure by $5{\sim}10%$ in performance.

Information and Communication Technology and the Organization of Corporate Space (정보통신기술과 기업공간의 재조직)

  • 황주성
    • Journal of the Korean Regional Science Association
    • /
    • v.12 no.2
    • /
    • pp.99-116
    • /
    • 1996
  • This study investigates the nature and patterns of interrelation between the emerging information and communication technology(ICT) and the organization of corporate space, both theoretically and empirically. In this work, ICT is conceptualized not so much a space-adjusting technology as an organizational technology. ICT is considered as a governance technology which is related to coordination function within a firm. Therefore, it is supposed to have a great relevance to the spatial reorganization of functions within a firm. Both questionnaire and case study method are used to gather necessary data from Korean electronics manufactures. The results of this study can be summarized as follow. First, the spatial structure of a firm, which is operationalised as the number and type of spatially separated establishments, is turned out to have a great explanatory power to its adoption of computer networks. Computer networks in muli-locational companies are introduced to overcome the limits of its spatial structure, such as duplication of functions, such as duplication of functions, loss of time spent in proceeding a job between different functional units, and unresponsiveness to the change of market demand. Second, new spatial division of labor and function could be possible through a series of business process reengineering, not through the mere adoption of ICT. Case studies reveal that computer network could help a firm to realize new forms of spatial division of labor, especially in those functions which is mainly based on the flow of information. Such function as ICT management, sales logistics and after-sales service are major parts where a new operational unit has appeared with the help of ICT. From above results, it can be concluded that the interrelations between ICT and organizational space should be approached intimately integrated with the change of industrial structure and it's organizational implications.

  • PDF

A Study on Smart Household Housing Module - Focused on the Application of smart technology - (지능형 주거 공간 모듈화에 관한 연구 - 스마트 기술 적용을 중심으로 -)

  • Moon, Min-Ho;Jung, Chul-Oh;Kim, Yong-Seong
    • Proceedings of the Korean Institute of Interior Design Conference
    • /
    • 2005.05a
    • /
    • pp.98-101
    • /
    • 2005
  • The study applied to a smart technology for every filed in the various countries of world is actively progressing. In the field of construction, a home-network market based on the smart technology is getting to occupy a position as a social issue. and lots of construction companies are taking part in the home-network market to take possession of a market and is investing for a marketing and a technical study in abundance. as a result, the concern for Household Housing of a future and for how to apply the material technology is getting increase. In this study, it has a understanding of such a necessity and suggests the research of the room-space Module to apply the smart technology and a prototype of a house as a building device. and it predicts not only the development of the technology but also about how to change the home-space that we live.

  • PDF

Recent Progress of MIRIS Development

  • Han, Won-Yong;Lee, Dae-Hee;Park, Young-Sik;Nam, Uk-Won;Jeong, Woong-Seob;Ree, Chang-Hee;Moon, Bong-Kon;Park, Sung-Joon;Cha, Sang-Mok;Lee, Duk-Hang;Park, Jang-Hyun;;Seon, Kwang-Il;Yang, Sun-Choel;Park, Jong-Oh;Rhee, Seung-Wu;Lee, Hyung-Mok;Matsumoto, Toshio
    • Bulletin of the Korean Space Science Society
    • /
    • 2011.04a
    • /
    • pp.23.4-23.4
    • /
    • 2011
  • MIRIS is the main payload of the Science and Technology Satellite-3 (STSAT-3). which is being developed by KASI for infrared survey observation of the Galactic plane at Paschen alpha wavelength. Wideband filters in I and H band will also be used to observe cosmic infrared background. The MIRIS will perform astronomical observations in the near-infrared wavelengths of 0.9~2 ${\mu}m$ using a 256 ${\times}$ 256 Teledyne PICNIC FPA sensor providing a 3.67 ${\times}$ 3.67 degree field of view with a pixel scale of 51.6 arcsec. The flight model of the MIRIS has been recently developed, The system performance tests have been made in the laboratory, including opto-mechanics test, vibration test, thermal vacuum test and passive cooling test down to 200K, using a thermally controlled vacuum chamber. Several focus tests showed good agreements compared to initial design parameters. Recent efforts are being concentrated to improve the system performances, particularly to reduce readout noise level in electronics. After assembly and integration into the satellite bus, the MIRIS will be launched in 2012.

  • PDF

Development of the Earth Observation Camera of MIRIS

  • Lee, Dae-Hee;Han, Won-Yong;Park, Young-Sik;Park, Sung-Jun;Moon, Bong-Kon;Ree, Chang-Hee;Pyo, Jeong-Hyun;Jeong, Woong-Seob;Nam, Uk-Won;Lee, Duk-Hang;Park, Kwi-Jong;Bae, Soo-Ho;Rhee, Seung-Wu;Park, Jong-Oh;Kim, Geon-Hee;Yang, Sun-Choel;Kim, Young-Ju
    • Journal of Astronomy and Space Sciences
    • /
    • v.28 no.3
    • /
    • pp.225-232
    • /
    • 2011
  • We have designed and manufactured the Earth observation camera (EOC) of multi-purpose infrared imaging system (MIRIS). MIRIS is a main payload of the STSAT-3, which will be launched in late 2012. The main objective of the EOC is to test the operation of Korean IR technology in space, so we have designed the optical and mechanical system of the EOC to fit the IR detector system. We have assembled the flight model (FM) of EOC and performed environment tests successfully. The EOC is now ready to be integrated into the satellite system waiting for operation in space, as planned.

Construction of Korean Space Weather Prediction Center: Space radiation effect

  • Lee, Jae-Jin;Cho, Kyung-Suk;Hwang, Jung-A;Kwak, Young-Sil;Kim, Khan-Hyuk;Bong, Su-Chan;Kim, Yeon-Han;Park, Young-Deuk;Choi, Seong-Hwan
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.33.3-34
    • /
    • 2008
  • As an activity of building Korean Space Weather Prediction Center (KSWPC), we has studied of radiation effect on the spacecraft components. High energy charged particles trapped by geomagnetic field in the region named Van Allen Belt can move to low altitude along magnetic field and threaten even low altitude spacecraft. Space Radiation can cause equipment failures and on occasions can even destroy operations of satellites in orbit. Sun sensors aboard Science and Technology Satellite (STSAT-1) was designed to detect sun light with silicon solar cells which performance was degraded during satellite operation. In this study, we try to identify which particle contribute to the solar cell degradation with ground based radiation facilities. We measured the short circuit current after bombarding electrons and protons on the solar cells same as STSAT-1 sun sensors. Also we estimated particle flux on the STSAT-1 orbit with analyzing NOAA POES particle data. Our result clearly shows STSAT-1 solar cell degradation was caused by energetic protons which energy is about 700 keV to 1.5 MeV. Our result can be applied to estimate solar cell conditions of other satellites.

  • PDF