• 제목/요약/키워드: space situational awareness

검색결과 33건 처리시간 0.017초

Development of a Reduction Algorithm of GEO Satellite Optical Observation Data for Optical Wide Field Patrol (OWL)

  • Park, Sun-youp;Choi, Jin;Jo, Jung Hyun;Son, Ju Young;Park, Yung-Sik;Yim, Hong-Suh;Moon, Hong-Kyu;Bae, Young-Ho;Choi, Young-Jun;Park, Jang-Hyun
    • Journal of Astronomy and Space Sciences
    • /
    • 제32권3호
    • /
    • pp.201-207
    • /
    • 2015
  • An algorithm to automatically extract coordinate and time information from optical observation data of geostationary orbit satellites (GEO satellites) or geosynchronous orbit satellites (GOS satellites) is developed. The optical wide-field patrol system is capable of automatic observation using a pre-arranged schedule. Therefore, if this type of automatic analysis algorithm is available, daily unmanned monitoring of GEO satellites can be possible. For data acquisition for development, the COMS1 satellite was observed with 1-s exposure time and 1-m interval. The images were grouped and processed in terms of "action", and each action was composed of six or nine successive images. First, a reference image with the best quality in one action was selected. Next, the rest of the images in the action were geometrically transformed to fit in the horizontal coordinate system (expressed in azimuthal angle and elevation) of the reference image. Then, these images were median-combined to retain only the possible non-moving GEO candidates. By reverting the coordinate transformation of the positions of these GEO satellite candidates, the final coordinates could be calculated.

A Study on the Strategies of the Positioning of a Satellite on Observed Images by the Astronomical Telescope and the Observation and Initial Orbit Determination of Unidentified Space Objects

  • Choi, Jin;Jo, Jung-Hyun;Choi, Young-Jun;Cho, Gi-In;Kim, Jae-Hyuk;Bae, Young-Ho;Yim, Hong-Suh;Moon, Hong-Kyu;Park, Jang-Hyun
    • Journal of Astronomy and Space Sciences
    • /
    • 제28권4호
    • /
    • pp.333-344
    • /
    • 2011
  • An optical tracking system has advantages for observing geostationary earth orbit (GEO) satellites relatively over other types of observation system. Regular surveying for unidentified space objects with the optical tracking system can be an early warning tool for the safety of five Korean active GEO satellites. Two strategies of positioning on the observed image of Communication, Ocean and Meteorological Satellite 1 are tested and compared. Photometric method has a half root mean square error against streak method. Also eccentricity method for initial orbit determination (IOD) is tested with simulation data and real observation data. Under 10 minutes observation time interval, eccentricity method shows relatively better IOD results than the other time interval. For follow-up observation of unidentified space objects, at least two consecutive observations are needed in 5 minutes to determine orbit for geosynchronous orbit space objects.

Development of a Data Reduction algorithm for Optical Wide Field Patrol

  • Park, Sun-Youp;Keum, Kang-Hoon;Lee, Seong-Whan;Jin, Ho;Park, Yung-Sik;Yim, Hong-Suh;Jo, Jung Hyun;Moon, Hong-Kyu;Bae, Young-Ho;Choi, Jin;Choi, Young-Jun;Park, Jang-Hyun;Lee, Jung-Ho
    • Journal of Astronomy and Space Sciences
    • /
    • 제30권3호
    • /
    • pp.193-206
    • /
    • 2013
  • The detector subsystem of the Optical Wide-field Patrol (OWL) network efficiently acquires the position and time information of moving objects such as artificial satellites through its chopper system, which consists of 4 blades in front of the CCD camera. Using this system, it is possible to get more position data with the same exposure time by changing the streaks of the moving objects into many pieces with the fast rotating blades during sidereal tracking. At the same time, the time data from the rotating chopper can be acquired by the time tagger connected to the photo diode. To analyze the orbits of the targets detected in the image data of such a system, a sequential procedure of determining the positions of separated streak lines was developed that involved calculating the World Coordinate System (WCS) solution to transform the positions into equatorial coordinate systems, and finally combining the time log records from the time tagger with the transformed position data. We introduce this procedure and the preliminary results of the application of this procedure to the test observation images.

A Study on the Enhancement of Detection Performance of Space Situational Awareness Radar System

  • Choi, Eun-Jung;Lee, Jonghyun;Cho, Sungki;Moon, Hyun-Wook;Yum, Jea-Myong;Yu, Jiwoong;Park, Jang-Hyun;Jo, Jung Hyun
    • Journal of Astronomy and Space Sciences
    • /
    • 제35권4호
    • /
    • pp.279-286
    • /
    • 2018
  • Radar sensors are used for space situational awareness (SSA) to determine collision risk and detect re-entry of space objects. The capability of SSA radar system includes radar sensitivity such as the detectable radar cross-section as a function of range and tracking capability to indicate tracking time and measurement errors. The time duration of the target staying in a range cell is short; therefore, the signal-to-noise ratio cannot be improved through the pulse integration method used in pulse-Doppler signal processing. In this study, a method of improving the signal-to-noise ratio during range migration is presented. The improved detection performance from signal processing gains realized in this study can be used as a basis for comprehensively designing an SSA radar system.

Development of an Autonomous Situational Awareness Software for Autonomous Unmanned Aerial Vehicles

  • Kim, Yun-Geun;Chang, Woohyuk;Kim, Kwangmin;Oh, Taegeun
    • 항공우주시스템공학회지
    • /
    • 제15권2호
    • /
    • pp.36-44
    • /
    • 2021
  • Unmanned aerial vehicles (UAVs) are increasingly needed as they can replace manned aircrafts in dangerous military missions. However, because of their low autonomy, current UAVs can execute missions only under continuous operator control. To overcome this limitation, higher autonomy levels of UAVs based on autonomous situational awareness is required. In this paper, we propose an autonomous situational awareness software consisting of situation awareness management, threat recognition, threat identification, and threat space analysis to detect dynamic situational change by external threats. We implemented the proposed software in real mission computer hardware and evaluated the performance of situational awareness toward dynamic radar threats in flight simulations.

우주감시를 위한 L-Band 위상배열레이다 시스템 설계 (Design of L-Band-Phased Array Radar System for Space Situational Awareness)

  • 이종현;최은정;문현욱;박준태;조성기;박장현;조중현
    • 한국전자파학회논문지
    • /
    • 제29권3호
    • /
    • pp.214-224
    • /
    • 2018
  • 지속적인 우주개발은 인공위성의 지구 추락, 우주잔해물과 우주선 간의 충돌 등 우주위험의 발생 가능성을 크게 증가 시킨다. 국내에서는 이러한 우주위험을 감시하기 위한 광학감시체계 구축은 진행하였으나, 독자적인 상시 우주감시 정보 획득 능력을 갖는 우주감시 레이다기술에 대해서는 확보가 필요한 실정이다. 본 논문에서는 재진입하는 우주물체의 추락 위험 및 저궤도 자국 위성의 충돌 위험에 대응하기 위한 우주감시 임무 분석 및 레이다 요구사항 도출을 통해, 우주물체의 탐지 및 추적을 위한 L-band 위상배열레이다 시스템을 제안한다. 우주감시 임무 분석 및 미국, 유럽 등 해외 선진 시스템의 사례 분석을 바탕으로 레이다 고려사항을 정의하고 레이다를 설계하였으며, 지름 10 cm 우주 파편에 대해 최대탐지거리 1,576 km를 가질 뿐, 아니라 탐지 범위 분석을 통해 국내 운용 중인 인공위성에 대해 우주감시 임무 수행이 가능함을 확인하였다.

A Study on Re-entry Predictions of Uncontrolled Space Objects for Space Situational Awareness

  • Choi, Eun-Jung;Cho, Sungki;Lee, Deok-Jin;Kim, Siwoo;Jo, Jung Hyun
    • Journal of Astronomy and Space Sciences
    • /
    • 제34권4호
    • /
    • pp.289-302
    • /
    • 2017
  • The key risk analysis technologies for the re-entry of space objects into Earth's atmosphere are divided into four categories: cataloguing and databases of the re-entry of space objects, lifetime and re-entry trajectory predictions, break-up models after re-entry and multiple debris distribution predictions, and ground impact probability models. In this study, we focused on reentry prediction, including orbital lifetime assessments, for space situational awareness systems. Re-entry predictions are very difficult and are affected by various sources of uncertainty. In particular, during uncontrolled re-entry, large spacecraft may break into several pieces of debris, and the surviving fragments can be a significant hazard for persons and properties on the ground. In recent years, specific methods and procedures have been developed to provide clear information for predicting and analyzing the re-entry of space objects and for ground-risk assessments. Representative tools include object reentry survival analysis tool (ORSAT) and debris assessment software (DAS) developed by National Aeronautics and Space Administration (NASA), spacecraft atmospheric re-entry and aerothermal break-up (SCARAB) and debris risk assessment and mitigation analysis (DRAMA) developed by European Space Agency (ESA), and semi-analytic tool for end of life analysis (STELA) developed by Centre National d'Etudes Spatiales (CNES). In this study, various surveys of existing re-entry space objects are reviewed, and an efficient re-entry prediction technique is suggested based on STELA, the life-cycle analysis tool for satellites, and DRAMA, a re-entry analysis tool. To verify the proposed method, the re-entry of the Tiangong-1 Space Lab, which is expected to re-enter Earth's atmosphere shortly, was simulated. Eventually, these results will provide a basis for space situational awareness risk analyses of the re-entry of space objects.

Performance Analysis of Sensor Systems for Space Situational Awareness

  • Choi, Eun-Jung;Cho, Sungki;Jo, Jung Hyun;Park, Jang-Hyun;Chung, Taejin;Park, Jaewoo;Jeon, Hocheol;Yun, Ami;Lee, Yonghui
    • Journal of Astronomy and Space Sciences
    • /
    • 제34권4호
    • /
    • pp.303-314
    • /
    • 2017
  • With increased human activity in space, the risk of re-entry and collision between space objects is constantly increasing. Hence, the need for space situational awareness (SSA) programs has been acknowledged by many experienced space agencies. Optical and radar sensors, which enable the surveillance and tracking of space objects, are the most important technical components of SSA systems. In particular, combinations of radar systems and optical sensor networks play an outstanding role in SSA programs. At present, Korea operates the optical wide field patrol network (OWL-Net), the only optical system for tracking space objects. However, due to their dependence on weather conditions and observation time, it is not reasonable to use optical systems alone for SSA initiatives, as they have limited operational availability. Therefore, the strategies for developing radar systems should be considered for an efficient SSA system using currently available technology. The purpose of this paper is to analyze the performance of a radar system in detecting and tracking space objects. With the radar system investigated, the minimum sensitivity is defined as detection of a $1-m^2$ radar cross section (RCS) at an altitude of 2,000 km, with operating frequencies in the L, S, C, X or Ku-band. The results of power budget analysis showed that the maximum detection range of 2,000 km, which includes the low earth orbit (LEO) environment, can be achieved with a transmission power of 900 kW, transmit and receive antenna gains of 40 dB and 43 dB, respectively, a pulse width of 2 ms, and a signal processing gain of 13.3 dB, at a frequency of 1.3 GHz. We defined the key parameters of the radar following a performance analysis of the system. This research can thus provide guidelines for the conceptual design of radar systems for national SSA initiatives.

우주감시레이다에 대한 지구 대기권 영향 분석 연구 (A Study on the Effect of Atmosphere on the Space Surveillance Radar)

  • 문현욱;최은정;이종현;염재명;권세웅;홍성민;조성기;박장현;조중현
    • 한국전자파학회논문지
    • /
    • 제29권8호
    • /
    • pp.648-659
    • /
    • 2018
  • 본 논문에서는 우주감시레이다에 대한 지구 대기권 영향을 분석하기 위해 대기 굴절에 의한 고도 오차 및 주파수별 전리층 시간 지연에 의한 거리 오차를 레이다 고각에 따라 도출하였다. 이를 위해 국내 기상관측소 측정 데이터를 이용하여 지역별/계절별 특성을 고려한 전파 굴절도 프로파일을 모델링하고, 광선추적법을 이용하여 전파 굴절에 의한 고도 오차를 도출했으며, 주파수에 따른 전리층 거리 오차를 도출하였다. 또한, 해외 우주감시레이다 및 국내 제안된 우주감시 레이다를 토대로 레이다 오차 특성에 따른 레이다 설계 고려사항에 대해 알아보았다. 따라서 이러한 지구 대기권에 의한 우주감시레이다 오차 특성 분석은 향후 우주감시레이다 설계 시 레이다 위치, 레이다 조향 범위 및 주파수 선정에 활용될 수 있을 것으로 기대된다.

관제사 수행의 인지적 균형과 불균형의 관계고찰 (A comparative study on the Air Traffic Controller's performance and cognitive imbalance)

  • 신현삼
    • 항공우주정책ㆍ법학회지
    • /
    • 제18권
    • /
    • pp.105-134
    • /
    • 2003
  • 본 논문에서는 항공교통관제사의 항공기 분리업무 수행중에 나타나는 복합적인 지각표상과 인지작용의 역동과정인 가설 여과와 순위부여의 예측과정을 심층 분석하였으며, 제한된 정보처리와 인지된 교통상황의 확증과정에서 표출된 인식수준의 편향과 교통 분규의 상관관계를 인지 심리학적 관점에서 고찰하였다.

  • PDF