• Title/Summary/Keyword: space science

Search Result 14,636, Processing Time 0.049 seconds

FUV Sky Survey Observation of Hot ISM

  • Han Wonyong;Seon Kwang-Il;Park Jang-Hyun;Yuk In-Soo;Nam Uk-Won;Lee Dae-Hee;Min Kyung-Wook;Ryu Kwang-Sun;Shinn Jong-Ho;Edelstein Jerry;Korpela Eric;Nishikida Kaori
    • Bulletin of the Korean Space Science Society
    • /
    • 2005.10a
    • /
    • pp.41-41
    • /
    • 2005
  • PDF

Space Weather Monitoring System for Geostationary Satellites and Polar Routes

  • Baek, Ji-Hye;Lee, Jae-Jin;Choi, Seong-Hwan;Hwang, Jung-A;Hwang, Eun-Mi;Park, Young-Deuk
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.101.2-101.2
    • /
    • 2011
  • We have developed solar and space weather monitoring system for space weather users since 2007 as a project named 'Construction of Korea Space Weather Prediction Center'. In this presentation we will introduce space weather monitoring system for Geostationary Satellites and Polar Routes. These were developed for satisfying demands of space weather user groups. 'Space Weather Monitoring System for Geostationary Satellites' displays integrated space weather information on geostationary orbit such as magnetopause location, nowcast and forecast of space weather, cosmic ray count rate, number of meteors and x-ray solar flux. This system is developed for space weather customers who are managing satellite systems or using satellite information. In addition, this system provides space weather warning by SMS in which short message is delivered to users' cell phones when space weather parameters reach a critical value. 'Space Weather Monitoring System for Polar Routes' was developed for the commercial airline companies operating polar routes. This provides D-region and polar cap absorption map, aurora and radiation particle distribution, nowcast and forecast of space weather, proton flux, Kp index and so on.

  • PDF

Optical Monitoring Strategy for Avoiding Collisions of GEO Satellites with Close Approaching IGSO Objects

  • Choi, Jin;Jo, Jung Hyun;Yim, Hong-Suh;Choi, Young-Jun;Park, Maru;Park, Sun-Youp;Bae, Young-Ho;Roh, Dong-Goo;Cho, Sungki;Park, Young-Sik;Jang, Hyun-Jung;Kim, Ji-Hye;Park, Jang-Hyun
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.4
    • /
    • pp.411-417
    • /
    • 2015
  • Several optical monitoring strategies by a ground-based telescope to protect a Geostationary Earth Orbit (GEO) satellite from collisions with close approaching objects were investigated. Geostationary Transfer Orbit (GTO) objects, Inclined GeoSynchronous Orbit (IGSO) objects, and drifted GEO objects forced by natural perturbations are hazardous to operational GEO satellites regarding issues related to close approaches. The status of these objects was analyzed on the basis of their orbital characteristics in Two-Line Element (TLE) data from the Joint Space Operation Center (JSpOC). We confirmed the conjunction probability with all catalogued objects for the domestic operational GEO satellite, Communication, Ocean and Meteorological Satellite (COMS) using the Conjunction Analysis Tools by Analytical Graphics, Inc (AGI). The longitudinal drift rates of GeoSynchronous Orbit (GSO) objects were calculated, with an analytic method and they were confirmed using the Systems Tool Kit by AGI. The required monitoring area was determined from the expected drift duration and inclination of the simulated target. The optical monitoring strategy for the target area was analyzed through the orbit determination accuracy. For this purpose, the close approach of Russian satellite Raduga 1-7 to Korean COMS in 2011 was selected.