• Title/Summary/Keyword: space plasmas

Search Result 55, Processing Time 0.02 seconds

MULTILAYER SPECTRAL INVERSION OF SOLAR Hα AND CA II 8542 LINE SPECTRA WITH HEIGHT-VARYING ABSORPTION PROFILES

  • Chae, Jongchul;Cho, Kyuhyoun;Kang, Juhyung;Lee, Kyoung-Sun;Kwak, Hannah;Lim, Eun-Kyung
    • Journal of The Korean Astronomical Society
    • /
    • v.54 no.5
    • /
    • pp.139-155
    • /
    • 2021
  • We present an updated version of the multilayer spectral inversion (MLSI) recently proposed as a technique to infer the physical parameters of plasmas in the solar chromosphere from a strong absorption line. In the original MLSI, the absorption profile was constant over each layer of the chromosphere, whereas the source function was allowed to vary with optical depth. In our updated MLSI, the absorption profile is allowed to vary with optical depth in each layer and kept continuous at the interface of two adjacent layers. We also propose a new set of physical requirements for the parameters useful in the constrained model fitting. We apply this updated MLSI to two sets of Hα and Ca II line spectral data taken by the Fast Imaging Solar Spectrograph (FISS) from a quiet region and an active region, respectively. We find that the new version of the MLSI satisfactorily fits most of the observed line profiles of various features, including a network feature, an internetwork feature, a mottle feature in a quiet region, and a plage feature, a superpenumbral fibril, an umbral feature, and a fast downflow feature in an active region. The MLSI can also yield physically reasonable estimates of hydrogen temperature and nonthermal speed as well as Doppler velocities at different atmospheric levels. We conclude that the MLSI is a very useful tool to analyze the Hα line and the Ca II 8542 line spectral daya, and will promote the investigation of physical processes occurring in the solar photosphere and chromosphere.

Interaction of Ion Cyclotron Electromagnetic Wave with Energetic Particles in the Existence of Alternating Electric Field Using Ring Distribution

  • Shukla, Kumari Neeta;Kumari, Jyoti;Pandey, Rama Shankar
    • Journal of Astronomy and Space Sciences
    • /
    • v.39 no.2
    • /
    • pp.67-77
    • /
    • 2022
  • The elements that impact the dynamics and collaborations of waves and particles in the magnetosphere of planets have been considered here. Saturn's internal magnetosphere is determined by substantiated instabilities and discovered to be an exceptional zone of wave activity. Interchanged instability is found to be one of the responsible events in view of temperature anisotropy and energization processes of magnetospheric species. The generated active ions alongside electrons that constitute the populations of highly magnetized planets like Saturn's ring electron current are taken into consideration in the current framework. The previous and similar method of characteristics and the perturbed distribution function have been used to derive dispersion relation. In incorporating this investigation, the characteristics of electromagnetic ion cyclotron wave (EMIC) waves are determined by the composition of ions in plasmas through which the waves propagate. The effect of ring distribution illustrates non-monotonous description on growth rate (GR) depending upon plasma parameters picked out. Observations made by Cassini found appropriate for modern study, have been applied to the Kronian magnetosphere. Using Maxwellian ring distribution function of ions and detailed mathematical formulation, an expression for dispersion relation as well as GR and real frequency (RF) are evaluated. Analysis of plasma parameters shows that, proliferating EMIC waves are not developed much when propagation is parallelly aligned with magnetosphere as compared to waves propagating in oblique direction. GR for the oblique case, is influenced by temperature anisotropy as well as by alternating current (AC) frequency, whereas it is much affected only by AC frequency for parallel propagating waves.

A study on the characteristics of axially magnetized capacitively coupled radio frequency plasma (축 방향으로 자화된 용량 결합형 RF 플라즈마의 특성 연구)

  • 이호준;태흥식;이정해;신경섭;황기웅
    • Journal of the Korean Vacuum Society
    • /
    • v.10 no.1
    • /
    • pp.112-118
    • /
    • 2001
  • Magnetic field is commonly used in low temperature processing plasmas to enhance the performance of the plasma reactors. E$\times$B magnetron or surface multipole configuration is the most popular. However, the properties of capacitively coupled rf plasma confined by axial static magnetic field have rarely been studied. With these background, the effect of magnetic field on the characteristics of capacitively coupled 13.56 MHz/40 KHz argon plasma was studied, Ion saturation current, electron temperature and plasma potential were measured by Langmuir probe and emissive probe. At low pressure region (~10 mTorr), ion current increases by a factor of 3-4 due to reduction of diffusion loss of charged particles to the wall. Electron temperature slightly increases with magnetic field for 13.56 MHz discharge. However, for 40 KHz discharge, electron temperature decreased from 1.8 eV to 0.8 eV with magnetic field. It was observed that the magnetic field induces large temporal variation of the plasma potential. Particle in cell simulation was performed to examine the behaviors of the space potential. Experimental and simulation results agreed qualitatively.

  • PDF

Application of a non-equilibrium ionization model to rapidly heated solar plasmas

  • Lee, Jin-Yi;Raymond, John C.;Reeves, Katharine K.;Shen, Chengcai;Moon, Yong-Jae;Kim, Yeon-Han
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.53.1-53.1
    • /
    • 2019
  • We apply a non-equilibrium ionization (NEI) model to a supra-arcade plasma sheet, shocked plasma, and current sheet. The model assumes that the plasma is initially in ionization equilibrium at low temperature, and it is heated rapidly by a shock or magnetic reconnection. The model presents the temperature and characteristic timescale responses of the Atmospheric Imaging Assembly (AIA) on board Solar Dynamic Observatory and X-ray Telescope (XRT) on board Hinode. We compare the model ratios of the responses between different passbands with the observed ratios of a supra-arcade plasma sheet on 2012 January 27. We find that most of observations are able to be described by using a combination of temperatures in equilibrium and the plasma closer to the arcade may be close to equilibrium ionization. We also utilize the set of responses to estimate the temperature and density for shocked plasma associated with a coronal mass ejection on 2010 June 13. The temperature, density, and the line of sight depth ranges we obtain are in reasonable agreement with previous works. However, a detailed model of the spherical shock is needed to fit the observations. We also compare the model ratios with the observations of a current sheet feature on 2017 September 10. The long extended current sheet above the solar limb makes it easy to analyze the sheet without background corona. We find that the sheet feature is far from equilibrium ionization while the background plasma is close to equilibrium. We discuss our results with the previous studies assuming equilibrium ionization.

  • PDF

Analysis of Si Etch Uniformity of Very High Frequency Driven - Capacitively Coupled Ar/SF6 Plasmas (VHF-CCP 설비에서 Ar/SF6 플라즈마 분포가 Si 식각 균일도에 미치는 영향 분석)

  • Lim, Seongjae;Lee, Ingyu;Lee, Haneul;Son, Sung Hyun;Kim, Gon-Ho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.4
    • /
    • pp.72-77
    • /
    • 2021
  • The radial distribution of etch rate was analyzed using the ion energy flux model in VHF-CCP. In order to exclude the effects of polymer passivation and F radical depletion on the etching. The experiment was performed in Ar/SF6 plasma with an SF6 molar ratio of 80% of operating pressure 10 and 20 mTorr. The radial distribution of Ar/SF6 plasma was diagnosed with RF compensated Langmuir Probe(cLP) and Retarding Field Energy Analyzer(RFEA). The radial distribution of ion energy flux was calculated with Bohm current times the sheath voltage which is determined by the potential difference between the plasma space potential (measured by cLP) and the surface floating potential (by RFEA). To analyze the etch rate uniformity, Si coupon samples were etched under the same condition. The ion energy flux and the etch rate show a close correlation of more than 0.94 of R2 value. It means that the etch rate distribution is explained by the ion energy flux.