• 제목/요약/키워드: space partitioning

검색결과 175건 처리시간 0.025초

3차원 객체의 모양에 기반한 특징추출 기법 (A Feature-Extraction Method based on shapes of 3D Object)

  • 신준섭;황수찬
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2001년도 봄 학술발표논문집 Vol.28 No.1 (B)
    • /
    • pp.70-72
    • /
    • 2001
  • 최근 멀티미디어 응용의 증가에 따라 그래픽 데이터를 위한 내용 기반 검색 기술에 대한 연구가 활발히 진행되고 있다. 또한 인터넷 응용분야에서 3차원 그래픽 데이터베이스 사용의 필요성이 대두되고 활용되고 있다. 대부분의 3차원 그래픽 시스템은 사용자에게 그래픽은 검색이 대상이 아니라 단순히 보여주는 역할로 주로 사용되고 있다. 3차원 그래픽객체는 어떤 객체들로 구성되여 있으며 그들의 크기는 어떠한지 등의 정보를 포함하고 있다. 따라서 3차원 그래픽 객체에서는 2차원 그래픽 객체에서는 2차원 이미지보다 의미객체에 대한 정확한 정보를 더 많이 얻어 낼 수 있다. 이러한 사실 때문에 2차원 이미지의 특징추출의 방법과는 다른 형식의 접근이 필요하다. 본 논문에서는 3차원 그래픽으로 모델링 된 3차원 객체들을 대상으로 객체가 이루는 X, Y, Z축상의 비율과 윤곽형태에 대한 SPBT(Space Partitioning Binary Tree)의 결과값으로 특징을 추출하고 샘플 데이터를 통해서 이들간의 클러스터링과 실제 예제 질의를 토한 비교분석을 통해 객체간의 유사검색이 가능하도록 하는 특징추출 방법을 제안하였다. 본 논문에서는 제시한 모양기반 특징추출 방법은 웹상의 다양한 3차원 객체정보의 자동분류나 3차원 그래픽 데이터베이스를 위한 인덱스 구축 등에 활용될 수 있을 것이다.

  • PDF

고정 분할 평균 알고리즘을 사용하는 향상된 메모리 기반 추론 (An Improved Memory Based Reasoning using the Fixed Partition Averaging Algorithm)

  • 정태선;이형일;윤충화
    • 한국정보처리학회논문지
    • /
    • 제6권6호
    • /
    • pp.1563-1570
    • /
    • 1999
  • 본 논문에서는 메모리 기반 추론(MBR : Memory Based Reasoning) 기법에서 사용하는 기억공간과 분류시간의 향상을 위하여 고정 분할 평균(FPA : Fixed Partition Averaging) 알고리즘을 제안하였다. 제안된 방법은 전체 학습패턴들을 대표하는 패턴을 추출하여 효과적인 메모리 사용을 가능하게 하는 방법으로서, 패턴 공간을 일정 개수의 초월평면으로 분할한 후, 초월평면별로 소속된 패턴들의 평균값을 계산하여 대표패턴을 추출한다. 또한 분류성능의 향상을 위하여, 특징과 클래스간의 상호정보(Mutual Information)를 특징의 가중치로 사용하였다.

  • PDF

셀 경계의 퍼지화에 의한 셀 매핑 제어 (Cell Hawing Control with Fuzzified Cell Boundaries)

  • 임영빈;윤중선
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.386-386
    • /
    • 2000
  • Cell mapping is a powerful computational technique for analyzing the global behavior of nonlinear dynamic systems. It simplifies the task of analyzing a continuous phase space by partitioning it into a finite number of disjoint cells and approximating system trajectories as cell transitions. A cell map for the system is then constructed based on the allowable control actions. Next search algorithms are employed to identify the optimal or near-optimal sequence(s) of control actions required to drive the system from each cell to the target cell by an "unravelling algorithm." Errors resulting from the cell center-point approximation could be reduced and eliminated by fuzzifying the bonders of cells. The dynamic system control method based on the cell mapping has been demonstrated for a motor control problem.l problem.

  • PDF

적응 뉴로-퍼지 필터를 이용한 비선형 채널 등화 (Nonlinear Channel Equalization Using Adaptive Neuro-Fuzzy Fiter)

  • 김승석;곽근창;김성수;전병석;유정웅
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.366-366
    • /
    • 2000
  • In this paper, an adaptive neuro-fuzzy filter using the conditional fuzzy c-means(CFCM) methods is proposed. Usualy, the number of fuzzy rules exponentially increases by applying the grid partitioning of the input space, in conventional adaptive neuro-fuzzy inference system(ANFIS) approaches. In order to solve this problem, CFCM method is adopted to render the clusters which represent the given input and output data. Parameter identification is performed by hybrid learning using back-propagation algorithm and total least square(TLS) method. Finally, we applied the proposed method to the nonlinear channel equalization problem and obtained a better performance than previous works.

  • PDF

Projection Pursuit K-Means Visual Clustering

  • Kim, Mi-Kyung;Huh, Myung-Hoe
    • Journal of the Korean Statistical Society
    • /
    • 제31권4호
    • /
    • pp.519-532
    • /
    • 2002
  • K-means clustering is a well-known partitioning method of multivariate observations. Recently, the method is implemented broadly in data mining softwares due to its computational efficiency in handling large data sets. However, it does not yield a suitable visual display of multivariate observations that is important especially in exploratory stage of data analysis. The aim of this study is to develop a K-means clustering method that enables visual display of multivariate observations in a low-dimensional space, for which the projection pursuit method is adopted. We propose a computationally inexpensive and reliable algorithm and provide two numerical examples.

열차 동역학에서 기구학적 비연성을 이용한 분할 해석 방법 (Partitioning method using kinematic uncoupling in train dynamics)

  • 박정훈;유흥희;황요하;김창호
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 1998년도 추계학술대회 논문집
    • /
    • pp.437-444
    • /
    • 1998
  • In this paper, an efficient and accurate formulation for the transient analysis of constrained multibody systems is presented. The formulation employs Kane's method along with the null space method. Kane's method reduces the dimension of equations of motion by using partial velocity matrix: it can improve the efficiency of the formulation. Furthermore, the formulation partitions the coefficient matrix of linear and nonlinear equations into several sub-matrices using kinematic uncoupling. This can solve the equations more efficiently. The proposed formulation can be used to perform dynamic analysis of systems which can he partitioned into several sub-systems such as train systems. One numerical example is given to demonstrate the efficiency and accuracy of the formulation, and another numerical example is given to show its application to the train systems.

  • PDF

공간 분할 방법을 사용하는 Skyline 질의 방법의 문제점 비교 분석 (A Problem Analysis of Skyline Queries using Space Partitioning Techniques)

  • 임선영;박은영;박영호
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2012년도 추계학술발표대회
    • /
    • pp.1382-1384
    • /
    • 2012
  • 최근 대용량 혹은 복잡한 데이터에서의 빠른 검색을 돕는 Skyline 질의 처리에 대한 관심이 높아지고 있으며, 많은 응용프로그램에서 사용되고 있다. Skyline 질의는 데이터베이스의 튜플들을 공간상으로 표현하여 질의 처리를 할 수 있는 데, 이 때 빠른 처리를 위하여 공간 분할 기법이 사용된다. 본 논문에서는 공간 분할 기법을 사용한 Skyline 질의 방법들을 소개하고 문제점을 분석한다. 또한, 문제점 해결 방안을 함께 제시하며 기대 효과를 예측한다.

간소화된 GPS 기반 궤적 추적 모델 (A Simplified Model to Extract GPS based Trajectory Traces)

  • 무하마드 아미르 살림;고병길;이영구;이승룡
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2013년도 춘계학술발표대회
    • /
    • pp.472-473
    • /
    • 2013
  • The growth in number and efficiency of smart devices such as GPS enabled smart phones and PDAs present an unparalleled opportunity for diverse areas of life. However extraction of GPS traces for provision of services demand a huge storage space as well as computation overhead. This is a challenging task especially for the applications which provide runtime services. In this paper we provide a simplified model to extract GPS traces of moving objects at runtime. Road segment partitioning and measure of deviation in angle of trajectory path is incorporated to identify the significant data points. The number of these data points is minimized by our proposed approach in an efficient manner to overwhelm the storage and computation overhead. Further, the competent reconstruction of complete itinerary based on gathered data, is also ensured by proposed method.

Designing fuzzy systems for optimal parameters of TMDs to reduce seismic response of tall buildings

  • Ramezani, Meysam;Bathaei, Akbar;Zahrai, Seyed Mehdi
    • Smart Structures and Systems
    • /
    • 제20권1호
    • /
    • pp.61-74
    • /
    • 2017
  • One of the most reliable and simplest tools for structural vibration control in civil engineering is Tuned Mass Damper, TMD. Provided that the frequency and damping parameters of these dampers are tuned appropriately, they can reduce the vibrations of the structure through their generated inertia forces, as they vibrate continuously. To achieve the optimal parameters of TMD, many different methods have been provided so far. In old approaches, some formulas have been offered based on simplifying models and their applied loadings while novel procedures need to model structures completely in order to obtain TMD parameters. In this paper, with regard to the nonlinear decision-making of fuzzy systems and their enough ability to cope with different unreliability, a method is proposed. Furthermore, by taking advantage of both old and new methods a fuzzy system is designed to be operational and reduce uncertainties related to models and applied loads. To design fuzzy system, it is required to gain data on structures and optimum parameters of TMDs corresponding to these structures. This information is obtained through modeling MDOF systems with various numbers of stories subjected to far and near field earthquakes. The design of the fuzzy systems is performed by three methods: look-up table, the data space grid-partitioning, and clustering. After that, rule weights of Mamdani fuzzy system using the look-up table are optimized through genetic algorithm and rule weights of Sugeno fuzzy system designed based on grid-partitioning methods and clustering data are optimized through ANFIS (Adaptive Neuro-Fuzzy Inference System). By comparing these methods, it is observed that the fuzzy system technique based on data clustering has an efficient function to predict the optimal parameters of TMDs. In this method, average of errors in estimating frequency and damping ratio is close to zero. Also, standard deviation of frequency errors and damping ratio errors decrease by 78% and 4.1% respectively in comparison with the look-up table method. While, this reductions compared to the grid partitioning method are 2.2% and 1.8% respectively. In this research, TMD parameters are estimated for a 15-degree of freedom structure based on designed fuzzy system and are compared to parameters obtained from the genetic algorithm and empirical relations. The progress up to 1.9% and 2% under far-field earthquakes and 0.4% and 2.2% under near-field earthquakes is obtained in decreasing respectively roof maximum displacement and its RMS ratio through fuzzy system method compared to those obtained by empirical relations.

적응형 정점 군집화를 이용한 메쉬 분할 (A Mesh Partitioning Using Adaptive Vertex Clustering)

  • 김대영;김종원;이혜영
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제15권3호
    • /
    • pp.19-26
    • /
    • 2009
  • 본 논문에서는 분할 축과 평면의 위치를 동적으로 결정하는 적응형 KD 트리 구조를 이용한 정점 군집화(Adaptive Vertex Clustering) 알고리즘과 이를 이용한 새로운 메쉬 분할 방법을 소개하고자 한다. 정점 군집화는 주로 한 개의 거대한 3차원 메쉬를 여러 개의 파티션(Partition)으로 분할하여 효율적으로 처리하고자 할 때 사용되는 기법으로, 옥트리 구조를 이용한 공간 분할 기법과 K-평균 군집화(K-Means Clustering) 방법 등이 있다. 그러나 옥트리 방식은 공간 분할 축과 이에 따른 분할된 공간의 크기가 고정되어 있어서 파티션 메쉬 면의 정렬 상태가 고르지 못하고 포함된 정점의 개수가 균등하지 못한 단점이 있다. 또한, K-평균군집화는 균등한 파티션을 얻을 수 있는 반면 반복처리와 최적화를 위해 많은 시간이 소요된다는 단점이 있다. 본 논문에서는 적응형 정점 군집화를 통해 빠른 시간에 균등한 메쉬 분할을 생성하는 알고리즘을 제안하고자 한다. 본 적응형 KD 트리는 메쉬가 포함된 경계상자(Bounding Box) 공간을 정점의 개수와 분할 축의 크기를 기준으로 계층적으로 분할한다. 그 결과 각 파티션 메쉬는 컴팩트성(compactness)의 특성을 유지하며 균등한 수의 정점을 포함하게 되어 각 파티션의 균등한 처리시간 및 메모리 소요량 등의 장점을 살려 향후 메쉬 간소화 및 압축 등의 다양한 메쉬 처리에 활용될 수 있기를 기대한다. 본 방법을 적용한 3차원 모델의 실험 통계와 분할된 파티션 메쉬의 시각적인 결과도 함께 제시하였다.

  • PDF