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Projection Pursuit K-Means Visual Clustering
Mi-Kyung Kim! and Myung-Hoe Huh?

ABSTRACT

K-means clustering is a well-known partitioning method of multivariate
observations. Recently, the method is implemented broadly in data mining
softwares due to its computational efficiency in handling large data sets.
However, it does not yield a suitable visual display of multivariate obser-
vations that is important especially in exploratory stage of data analysis.
The aim of this study is to develop a K-means clustering method that en-
ables visual display of multivariate observations in a low-dimensional space,
for which the projection pursuit method is adopted. We propose a com-
putationally inexpensive and reliable algorithm and provide two numerical
examples.
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1. Introduction

Clustering is a partitioning method of multivariate observations in such a
way that the observations within the same group are similar each other and
those belonging to different groups are dissimilar as much as possible. Among
clustering methods, K-means clustering (Everitt, 1974; Hartigan, 1975) is known
to be efficient and reliable (Milligan, 1980 and 1981), so that it is implemented
broadly in most statistical and data mining softwares. However, the method does
not provide any natural visual display of clustering results, which is very valuable
in exploratory data analysis and/or data mining.

There appeared several studies on visual clustering. Kim (1999) and Kim,
Kwon and Cook (2000), for instance, proposed a two-stage method that performs
hierarchical /non-hierarchical clustering at the first stage and displays the results
via multidimensional scaling on a suitable low-dimensional perceptual map at
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the second stage. Recently, Huh and Kim (2000) proposed an iterative procedure
that repeats K-means clustering and the dimensional reduction by canonical dis-
criminant analysis, to produce a meaningful visual display of K-means clustering
results on the low-dimensional space. Even though it has very handy algorithm,
the underlying rationale is indirect and the method lacks some theoretical back-
up.

There have been proposed various visualization methods for multidimensional
data, such as dynamic scatter plots and grand tours (Becker, Cleveland and
Wilks, 1988; Young, Kent and Kuhfeld, 1988; Cook, Buja, Cabrera and Hurley,
1995; Cook and Buja, 1997). However, these tools are not specifically targeted to
clustering purpose. On the theory side, Stute and Zhu (1995) studied K-means
clustering based on projection pursuit and showed several asymptotic properties
such as consistency. Recently, dozens of related papers were published in Korean
journals. See Lee, Park and Kim (1995), Jhun and Jin (2000), Huh (2000) and
Baek and Sim (2000) in clustering, Ahn and Rhee (1992) and Park, Choi and Koo
(2000) in projection pursuit method, and Huh and Song (2001) in visualization.

The aim of this paper is to develop a K-means clustering method that enables
more direct visual display of multivariate observations in the low-dimensional
linear space, guided by projection pursuit method. We propose a computationally
efficient and reliable algorithm, demonstrate it by two numerical examples, and

provide several notes.

2. Dimensional Reduction for Visual Clustering

Let X be an n X p column-centered matrix of which the rows are observations
and the columns are variables. When the p-variate observations are projected on
the subspace spanned by two orthogonal unit-norm p x 1 vectors a and 3, X is
reduced to X (e, 3) or X. Suppose that each observation is assigned to one of k
groups. For the i** observation belonging to the jth group (5 = 1,..., k), we write
zi; = 1 and Z = (2;;) which is n x k. Then, on the projected linear subspace, the
overall coeflicient of determination due to clustering can be expressed as

B
overallR?Q) = M
trace(T)
where
T=X'X, B=X'z(z'2)'2X, W=T-B (T=W +B).
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Ultimate goal for visual clustering on two-dimensional space is to find a and
A so that the overallRé) is maximized under the constraint that a and 8 are
orthonormal vectors in p-dimensional space. There are two subproblems to solve.
First, for given basis determined by a and 3, how to partition observations into
k-groups to maximize overallR?Q)? Second, how to choose a and B to achieve
the ultimate goal?

The first problem poses a combinatorial computation, so that it is hardly
possible to obtain the exact solution. However, we may rely on conventional K-
means clustering for an approximate solution. For the second problem, we can
make use of a variant of the project pursuit method originated from Friedman
and Tukey (1974), as will be detailed in Section 3.

3. The Algorithm

Among several algorithms for general projection pursuit optimization, random
search algorithm by Posse (1990, 1995) is known to be efficient and reliable, which
can be described as follows:

Step 1. Set the two orthogonal unit-norm vectors e« and 8 in RP. Moreover,
specify m for the number of independent global trials, half for the maximal
number of independent local trials, and ¢ for the size of local random search,
all of which are clarified shortly.

Step 2. Generate a unit-norm random vector u in RP. Then replace a by

. a+cu

ot = ———
|| + cul]

a jittering of o in the random direction specified by u with magnitude c.
Accordingly, to guarantee the orthogonality of basis vectors, A8 is modified

to
g B-(@Bar
1B — (e*iB)e*]|”
Also, to search the opposite side, set
- a—cu
e —cull”

:8 _ (a**tﬂ)a**
18 = (a**tB)ar=||

ﬂ** —
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Step 3. Compute projection indices overallRé) for the data set X(a*,8") and
X{(a**, ™). If any improvement is found, renew o and B and initialize
the counter. Otherwise, keep the old basis vectors @ and 8 and increase
the counter by one.

Step 4. If the counter is less than equal to half, return to Step 2. Otherwise,
reduce the value of ¢ by half and check whether the new value of ¢ is
sufficiently small. If so, then proceed to Step 5. Otherwise, initialize the
counter and go to Step 2.

Step 5. Repeat Steps 1 to 4 m times, to acquire a number of sample projection
indices. Choose the maximum and keep the corresponding final vectors a
and 8.

Posse’s algorithm works wonderfully in many cases. In Step 2, however, we
note that the perturbation scheme affects both a and 3, in such a way that the
algorithm is more focused on a than on . As the result, especially when one
of basis vectors arrives near the optimal position, the algorithm may not keep it
pivoted. Instead, the algorithm lets basis vectors wander some more time.

To overcome such deficiency, we propose modifications of Steps 2, 3 and 4:

New Step 2. Generate a unit-norm random vector u in RP and make it
orthogonal to current basis vectors o and 3:

u — (ctu)a — (B'u)B

u = .
lu — (atu)a — (B*u)Bl|
Set
of = o+ cuy o _ o — cuy
lla + cuq|” llo — cu|

as jitterings of e in the random direction specified by +u; with magnitude
c. We note that both a* and o** are orthogonal to the other basis vector
B. Similarly, generate independently another unit-norm random vector v
in RP, and make it orthogonal to current basis vectors o and 3:

v — (otv)a - (B'v)B

17 v = (@tvye — (B8]
Subsequently, set
. ,B+C’U1 e _ ﬁ—c’ul
B =Tgxell” P TiBZcul



Projection Pursuit K-Means Visual Clustering 523

as jitterings of B in the random direction specified by +v; with magnitude
c. Note that both 8* and B8** are orthogonal to the other basis vector a.

New Step 3. Compute and compare projection indices ovemllR(Qz) for the data
set X(a*, ), X(a*, ) and X(a, "), X(a,B*). If any improvement is
found, renew a and @ and initialize the counter. Otherwise, keep the old
basis vectors a and # and increase the counter by one.

New Step 4. If the counter is less than equal to half/2, return to New Step 2.
Otherwise, reduce the value of ¢ by half and check whether the new value
of ¢ is sufficiently small. If so, then proceed to Step 5. Otherwise, initialize
the counter and go to New Step 2.

The reason why we reduce the effective value of half by half is that the
computing load is doubled in New Step 3 compared to that in Step 3. By such
modification, the efficiency of the new algorithm relative to the existing algorithm
by Posse can be assessed more fairly.

Since Mahalanobis distance between observations is more meaningful statis-
tically than Euclidean distance, we may consider K-means clustering based on
Mahalanobis distance as in Huh (2000). For this, one may consider further mod-
ification of New Step 4 as follows:

New Step 4 with Mahalanobis option. If the counter is less than equal to
half/2, return to New Step 2. Otherwise, reduce the value of ¢ by half, then
check whether the new value of ¢ is sufficiently small. If so, then proceed
to Step 5. Otherwise, initialize the counter, transform the data set by

where Sp is the pooled sample covariance matrix resulting from the cur-
rently available grouping of observations. That is,

Sp = [X'X - X'Z(Z'Z) "1 Z2!X]/(n — k).
Then, go to New Step 2.

In the next section, the computational efficiency of the algorithm is demon-
strated with two numerical examples without using Mahalanobis option in New
Step 4.
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4. Numerical Demonstration of Computation Efficiency

We applied our algorithm to Fisher’s iris data and Australian rock crab data
(Campbell and Mahon, 1974; Ripley, 1996, p.13). Fisher’s iris data consists
of 150 observations with four variables (z;: sepal length, z5: sepal width, z3:
petal length, z4: petal width). For the moment, we ignore the fact that each
observation belongs to one of three species of iris (1: setosa, 2: versicolor, 3:
virginica) but we assume there are three groups (k = 3).

See Table 1 for the results with standardized (centered and scaled) Fisher’s
iris data. We executed the whole computation ten times by setting the start-
ing/ending value, ¢; and ¢, of ¢ equal to 1 and 0.001. The first column of Table
1 shows the result by Posse’s algorithm with the half set to 10 that took 4 min-
utes 18 seconds for the computing time and achieved 0.9489 for the overall R%Q)
on average. In contrast, all the replications with proposed algorithm with the
same parameters, with the same value of half, yielded the ovemllRé) 0.9602 by
consuming 1 minute 52 seconds on the average. We note here that the proposed
algorithm is faster and more reliable. For another instance, we applied the pro-
posed algorithm to Australian rock crab data, which consists of 200 observations
of four gender x color groups with five variables (z;: frontal lip, z9: rear width,
z3: midline length, z4: carapace width, z5: body depth). Prior to main clus-
tering analysis, the data are centered and sphered (covariance-adjusted) because
of inherent high collinearity. Table 2 shows the result when the number & of
clusters is set to four. In this case, the existing and proposed algorithms pro-
duce nearly equal computing time, while the proposed algorithm dominates the
existing algorithm as for the projection index, the ovemllR%z).

We observed that the proposed algorithm is better in computing time and/or
finding larger projection index, with considerable variation. Actually the numbers
in Table 1 and Table 2 being produced by the proposed algorithm are accurate to
the fifth decimal place. But these results depend on the data sets and so it needs
further investigation on relevant conditions in the future. (All computations in
this section are performed on Windows 98 IBM PC with Pentium III 450MHz
processor, 64MB RAM and SAS/IML.)

5. Plotting Observations and Variables

It is very natural that the observations are represented on the two-dimensional
display by the rows of X(e,3) where X is the n x p matrix of preprocessed



Projection Pursuit K-Means Visual Clustering

TABLE 1 Two-dimensional projection pursuit K-means visual clustering
applied to Fisher’s iris data

Posse’s algorithm

Proposed algorithm

Argument m = 10, half =10, m = 10, half =10,
Cc1 = 1, Cco = 0.001 c = 1, Cog = 0.001
Replication Time overallR(22) Time overallR?z,)

1 3min. 20sec. 0.9595 Imin. 5isec. 0.9602

2 3min. 33sec. 0.9538 1min. 52sec. 0.9602

3 3min. 35sec. 0.9578 1min. 46sec. 0.9602

4 4min. 36sec. 0.9531 lmin. 56sec. 0.9602

5 3min. 20sec. 0.9086 lmin. 44sec. 0.9602

6 10min. 10sec. 0.9530 1min. 43sec. 0.9602

7 3min. 26sec. 0.9550 lmin. 55sec. 0.9602

8 3min. 15sec. 0.9398 lmin. 55sec. 0.9602

9 3min. 50sec. 0.9509 2min. lsec. 0.9602

10 3min. 53sec. 0.9578 1lmin. 59sec. 0.9602

Mean 4min. 18sec. 0.9489 lmin. 52sec. 0.9602

TABLE 2 Two-dimensional projection pursuit K-means visual clustering

applied to Austrelian rock crab data

Posse’s algorithm

Proposed algorithm

Argument m = 10, half =10, m = 10, half =10,
Cl = 1, Cyg = 0.001 c = 1, o = 0.001
Replication Time overallRfy Time overall R,

1 Smin. 42sec. 0.7921 6min. 52sec. 0.8474

2 6min. 39sec. 0.8222 7min. 36sec. 0.8474

3 Tmin. 21sec. 0.7793 5min. 48sec. 0.8474

4 6min. 43sec. 0.7975 Tmin. 1sec. 0.8474

5 7min. 10sec. 0.7467 5min. 33sec. 0.8474

6 Tmin. 3Jsec. 0.7526 6min. 4sec. 0.8474

7 6min. 56sec. 0.7821 6min. 28sec. 0.8474

8 6min. 1sec. 0.7711 5min. 46sec. 0.8474

9 6min. 42sec. 0.7472 Tmin. 50sec. 0.8474

10 6min. 56sec 0.7735 Tmin. 30sec. 0.8474

Mean 6min. 43sec. 0.7764 6min. 39sec. 0.8474
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(centered/scaled/sphered) measurements and a and B are final basis vectors.
Accordingly, the variable X, can be plotted at vi(a, ), if v’ represents the
J J J

appropriate size and direction of the corresponding variable (5 = 1,...,k). We
suggest
v; = ey, for the standardized (centered and scaled) data,
= s;ej, for the centered data,

= st;l/ Zej, for the centered and sphered (covariance-adjusted) data.

where s; is the standard deviation of X;, e; = (0,...,1,...,0)" is the 4t elemen-
tary vector, and St is the p x p total covariance matrix.

For standardized Fisher’s iris data when the algorithm is applied with the
number k£ of cluster set to three and the parameters of optimization algorithm as
m = 10, half = 10, ¢; = 1 and ¢y = 0.001, we obtained overallR(?Q) = 0.9602 and
the final basis vectors

0.2322 0.0221

o = —0.1551 = 0.2484
-0.6571 |’ —0.7295

0.7001 —0.6369

Figure la and 1b show observations and variables on the two-dimensional
plane obtained by the projection pursuit K-means visual clustering for Fisher’s
iris data. Overlaying Figure 1a to the top of Figure 1b, we summarize individual
cluster’s characteristics as follows:

Cluster 1. Being in positive direction of variable 25 and in the negative direc-
tion of variables x3, x4, their sepals are wide and their petals are short and
narrow.

Cluster 2. Being in negative direction of variable z5 and in the positive direc-
tion of variables z3, 4, they have narrow sepals and long and wide petals.

Cluster 3. They are similar to Cluster 2, but they have narrower sepals and
longer and wider petals.

By the way, this data set has the external classification code (iris species), and
so it may be interesting to look at the classification table of clustering group and
the classification code. It turns out. in Table 3. that the two-dimensional K-means
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FIGURE la K-means visual clustering display of Fisher’s iris data: Observations are represented
with cluster numbers.
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FIGURE 1b K-means visual clustering display of Fisher’s iris data: Variables are represented as
arrows.
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TABLE 3 Clustering result of Fisher’s iris data

(a) K-means clustering

Cluster 1 | Cluster 2 | Cluster 8
Species 1 50 0 0
Species 2 0 39 11
Species 3 0 14 36

(b) Two-dimensional K-means visual clustering

Cluster 1 | Cluster 2 | Cluster 8
Species 1 50 0 0
Species 2 0 46 4
Species 3 0 1 49

visual clustering is effective in reducing classification error. The conventional K-
means clustering results in 25 classification errors out of 150 cases, while the
proposed method yields 5 errors.

We applied the proposed algorithm to centered and sphered Australian rock
crab data, the number of clusters k£ = 4, m = 10, half = 10, ¢; = 1, ¢p = 0.001,

and obtained overallR(22) = (0.8474 and the final basis vectors

0.3680 —0.2574

0.8804 0.3311

a=| -02505 |, B= 0.8899
-0.1278 —0.0740

0.1024 0.1634

Figure 2a and 2b show observations and variables on the two-dimensional
space obtained by the projection pursuit K-means visual clustering. We may
interpret the cluster characteristics as in the case of Fisher’s iris data. When
tabulated by cluster membership and natural groups by gender (male/female)
and color (orange/blue), observations within each group are assigned to the modal
cluster with smaller number of deviants, as seen in Table 4.

6. Concluding Remarks

The proposed algorithm depends on several parameters such as the starting
and ending values (¢; and ¢g) of ¢, the number of inner repetitions half and the
number of independent global repetitions m. Kim (2000) recommended that

1<e; £2, ¢g=0.001, half =10 and m > 10



FIGURE 2a K-means visual clustering display of Austrelian rock crab data:
represented with cluster numbers.

FIGURE 2b K-means visual
sented as arrows.

Projection Pursuit K-Means Visual Clustering

Dimension 2 0

1

-2

-3

—4

2
2 B 4 “444
4 A
2 g
2 24
e
£ & 3
1 333 %%3

~4

-3

—2

-1 0

Dimension 1

<]

X1

-1

-2

-3

—4

x4

~4

-3

—e

-1 Q

Dimension 1

529

Observations are

clustering display of Australian rock crab data: Variables are repre-



530 Mi-Kyung Kim and Myung-Hoe Huh

TABLE 4 Clustering result of Australian rock crab data
(a) K-means clustering

Cluster 1 | Cluster 2 | Cluster 3 | Cluster 4

Species 1 48 2 0 0
Species 2 22 27 1 0
Species 3 1 0 0 49
Species 4 0 14 33 3

(b) Two-dimensional K-means visual clustering

Cluster 1 | Cluster 2 | Cluster 8 | Cluster 4

Species 1 0 48 0 2
Species 2 0 10 0 40
Species 3 50 0 0 0
Species 4 5 0 45 0

through several experimental analysis with optimal scaling.

This study proposed a practical algorithm for “Projection Pursuit K-Means
Visual Clustering” which performs K-means clustering of multivariate observa-
tions by dimensional reduction. The improvement of computational efficiency
and reliability can be achieved through the proposed algorithm. In applying the
method, however, one needs to specify k, the number of clusters, and initialize the
seeds of cluster, as in conventional K-means clustering. Huh (2002) is a helpful
guidance for this.
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