• Title/Summary/Keyword: space of flow

Search Result 2,709, Processing Time 0.028 seconds

Research on Flow Analysis Program Development Considering Equilibrium Plasma Flow and Impulse Characterization of Sparkjet Actuator (플라즈마에 의한 평형 유동을 고려한 스파크제트 액츄에이터 유동 해석 프로그램 개발과 추력 특성 연구)

  • Kim, Hyung-Jin;Shin, Jin Young;Chae, Jeongheon;Ahn, Sangjun;Kim, Kyu Hong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.2
    • /
    • pp.90-97
    • /
    • 2019
  • Sparkjet actuator, also known as plasma synthetic jet actuator (PSJA), is an active flow control device that has possibility of controling supersonic flow. This actuator utilizes arc plasma to deposit energy onto the gas inside the cavity to raise temperature and pressure. A change in the state of the fluid inside the cavity generates pressure waves and momentum jet, and they are exhausted through out the orifice exit and disturb external flow field. Since the cavity flow is affected by arc plasma, which is an equilibrium plasma and have generated equilibrium flow, the equilibrium state of air should be considered in order to analyze the flow of sparkjet actuator. In this study, numerical program for equilibrium flow was developed for the use of sparkjet actuator analysis. The developed program was validated by comparing the time - accurate jet front positions with the reference result. Then, impulse characteristics of the actuator in the atmospheric quiescent air were explained.

Study of Screened Supersonic Jet Flow Fields (스크린 설치에 따른 초음속 제트유동 변화에 관한 연구)

  • Lee, Yeol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.8
    • /
    • pp.92-98
    • /
    • 2005
  • Screen can provide any disturbed resistance that affects the change in characteristics of turbulence, velocity and pressure distributions of the flow field, and thus it has been widely used to control the flow. Some previous related studies for compressible flows have limitations such as, considering relatively low-Mach-number flows in the range of 0.3 ∼ 0.7, and not observing the detailed shock structures of the flow fields. An experimental study on highly compressible axi-symmetric supersonic jet flow fields behind wire-gauze screen has thus been carried out. Continuous/instantaneous flow images by Schlieren flow- visualization technique and the information of Pitot pressure/flow-noise measurements of the flow field behind the screen for various jet expansion conditions have been obtained. Effects of various porosity and inclination angles of the screen at the nozzle exit have also been investigated, and the experimental results have been compared to the case with no screen installed.

High-Altitude Environment Simulation of Space Launch Vehicle Including a Thruster Module (추력기 모듈을 포함한 우주발사체 고공환경모사)

  • Lee, Sungmin;Oh, Bum-Seok;Kim, YoungJun;Park, Gisu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.10
    • /
    • pp.791-797
    • /
    • 2018
  • In this work, the high-altitude environment simulation study was carried out at an altitude of 65 km exceeding Mach number of 6 after the launch of Korean Space Launch Vehicle using a shock tunnel. To minimize the flow disturbance due to the strut support of test model as much as possible, a few different types of strut configurations were considered. Using the configuration with minimum disturbance, the high-altitude environment simulation experiment including a propulsion system with a single-plume, was conducted. From the thruster test through flow visualization, not only a shockwave pattern, but a general flow-field pattern from the mutual interaction between the exhaust plume and the free-stream undisturbed flow, was experimentally observed. The comparison with the computation fluid dynamic(CFD) results, showed a good agreement in the forebody whereas in the afterbody and the nozzle the disagreement was about ${\pm}7%$ due to unwanted shockwave formation emanated from the nozzle-exit.

Jet Interaction Flow Analysis of Lateral Jet Controlled Interceptor Operating at Medium Altitude (중고도에서 운용되는 측 추력 제어 요격체에 대한 제트 간섭 유동 분석)

  • Choi, Kyungjun;Lee, Seonguk;Oh, Kwangseok;Kim, Chongam
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.12
    • /
    • pp.986-993
    • /
    • 2018
  • Lateral thrust jet has better maneuverability performance than the control surface like the conventional fin for attitude control or orbital transition of guided weapons. However, in the supersonic region, a jet interaction flow occurs due to the lateral thrust jet during flight, and a complicated flow structure is exhibited by the interaction of the shock wave, boundary layer flow, and the vortex flow. Especially, hit-to-kill interceptors require precise control and maneuvering, so it is necessary to analyze the effect of jet interaction flow. Conventional jet interaction analyses were performed under low altitude conditions, but there are not many cases in the case of medium altitude condition, which has different flow characteristics. In this study, jet interaction flow analysis is performed on the lateral jet controlled interceptor operating at medium altitude. Based on the results, the structural characteristics of the flow field and the changes of aerodynamic coefficient are analyzed.

Numerical Analysis of Electro-Hydrodynamic (EHD) Flows in Electrostatic Precipitators using Open Source Computational Fluid Dynamics (CFD) Solver (오픈 소스 전산 유체 역학 해석 프로그램을 이용한 전기집진기 내부 정전 유동 해석)

  • Song, Dong Keun;Hong, Won Seok;Shin, Wanho;Kim, Han Seok
    • Particle and aerosol research
    • /
    • v.9 no.2
    • /
    • pp.103-110
    • /
    • 2013
  • The electrostatic precipitator (ESP) has been used for degrading atmospheric pollutants. These devices induce the electrical forces to facilitate the removal of particulate pollutants. The ions travel from the high voltage electrode to the grounded electrode by Coulomb force induced by the electric field when a high voltage is applied between two electrodes. The ions collide with gas molecules and exchange momentum with each other thus inducing fluid motion, electrohydrodynamic (EHD) flow. In this study, for the simulation of electric field and EHD flow in ESPs, an open source EHD solver, "espFoam", has been developed using open source CFD toolbox, OpenFOAM(R) (Open Field Operation and Manipulation). The electric potential distribution and ionic space charge density distribution were obtained with the developed solver, and validated with experimental results in the literature. The comparison results showed good agreement. Turbulence model is also incorporated to simulate turbulent flow; hence the developed solver can analyze laminar and turbulent flow. In distributions of electric potential and space charge, the distributions become distorted and asymmetric as the flow velocity increases. The effect of electrical drift flow was investigated for different flow velocities and the secondary flow in a flow of low velocity is successfully predicted.

Oscillation Characteristics of Turbulent Channel Flow with Wall Blowing (채널유동에서 질량분사에 의한 표면유동의 진동 특성)

  • Na, Yang;Lee, Chang-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.1
    • /
    • pp.62-68
    • /
    • 2009
  • The interaction between wall blowing and oxidizer flow can generate a very complicated flow characteristics in combustion chamber of hybrid rockets. LES analysis was conducted with an in-house CFD code to investigate the features of turbulent flow without chemical reactions. The numerical results reveal that the flow oscillations at a certain frequency exists on the fuel surface, which is analogous to those observed in the solid propellant combustion. However, the observation of oscillating flow at a certain frequency is only limited to a very thin layer adjacent to wall surface and the strength of the oscillation is not strong enough to induce the drastic change in temperature gradient on the surface. The visualization of fluctuating pressure components shows the periodic appearance of relatively high and low pressure regions along the axial direction. This subsequently results in the oscillation of flow at a certain fixed frequency. This implies that the resonance phenomenon would be possible if the external disturbances such as acoustic excitation could be imposed to the oscillating flow in the combustion chamber.

A Numerical Study on the Flow and Heat Transfer Characteristics in a Kimchi Refrigerator (김치냉장고 내의 유동 및 열전달 특성에 관한 수치해석)

  • 윤준원
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.12
    • /
    • pp.1078-1087
    • /
    • 2003
  • Kimchi refrigerator is a household electric appliance developed with the wholly domestic technology for maturing and keeping kimchi. However, the principle of keeping is not yet revealed obviously. This numerical study has been conducted to investigate the flow and heat transfer characteristics in a kimchi refrigerator. The effects of arrangement variation of a evaporation tube are examined. Also, the heat transfer characteristics through the insulation material are discussed in detail. The flow and temperature field was simulated using the commercial code of CFX-5.3. A natural convection flow is formed through about 5/6 region from the bottom within the keeping space and accordingly, the 90% region of kimchi containers satisfies the temperature requirement with 0$\pm$0.5$^{\circ}C$. The stagnant flow exists in the upper 1/6 region of the keeping space and accordingly, the stratified high temperature distributions appear in the upper region of kimchi containers. The upward shift of the start location of a evaporation tube improves the temperature concentration toward $0^{\circ}C$ but the pitch variation is of no effect. The heat fluxes on the insulation surfaces show two-dimensional distributions with being higher toward the center. Through the variation of insulation thickness, 3.5% saving of insulation material is obtained under the same heat transfer rate.

A Study on the Effect of the Inclined Structure on the Hydraulic Behavior Index within Sedimentation basin (경사 구조물이 침전지내 수리거동 Index에 미치는 영향)

  • Lim, Seong-Ho;Hwang, Jun-Sik;Park, No-Suk;Kim, Seong-Su;Lim, Kyung-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.5
    • /
    • pp.517-526
    • /
    • 2009
  • This research has been conducted to investigate the characteristics of hydraulic behavior within the PAC contactor, the rectangular shape sedimentation basin without inclined tube and the other one with inclined tube those are parts of demonstration plants(capacity : $2,000m^3/d$) in Korea Institute of Water and Environment. As results of tracer tests, the flow within PAC contactor was evaluated to divided into plug flow and dead space distinctly, and characteristics of dead space was close to that of CSTR(Complete/continuous Stirred Tank Reactor). Also, considering Reynolds number, Froude number, Morill, Modal, NCSTR Inex and plug flow/mixed flow fraction, in the case of the rectangular shape sedimentation basin without inclined tube, the characteristics of flow pattern was close to CSTR. On the other hand, in the case of the basin with inclined tube, the region of CSTR decreased precisely compared with the case of no-tube. Until now we have recognized that the inclined hydraulic structure just reduces the surface loading rate within a sedimentation basin. Actually besides, the inclined structure have an important effect on the hydraulic behavior within the basin.

Effect of geometrical parameters of reentry capsule over flowfield at high speed flow

  • Mehta, R.C.
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.4
    • /
    • pp.487-501
    • /
    • 2017
  • The main purpose of the paper is to analyze effect of geometrical parameters of the reentry capsules such as radius of the spherical cap, shoulder radius, back shell inclination angle and overall length on the flow field characteristics. The numerical simulation with viscous flow past ARD (Atmospheric Reentry Demonstrator), Soyuz (Russian) and OREX (Orbital Reentry EXperimental) reentry capsules for freestream Mach numbers range of 2.0-5.0 is carried out by solving time-dependent, axisymmetric, compressible laminar Navier-Stokes equations. These reentry capsules appear as bell, head light and saucer in shape. The flow field features around the reentry capsules such as bow shock wave, sonic line, expansion fan and recirculating flow region are well captured by the present numerical simulations. A low pressure is observed immediately downstream of the base region of the capsule which can be attributed to fill-up in the growing space between the shock wave and the reentry module. The back shell angle and the radius of the shoulder over the capsule are having a significant effect on the wall pressure distribution. The effects of geometrical parameters of the reentry capsules will useful input for the calculation of ballistic coefficient of the reentry module.

Investigation of passive flow control on the bluff body with moving-belt experiment

  • Rho, Joo-Hyun;Lee, Dongho;Kim, Kyuhong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.2
    • /
    • pp.139-148
    • /
    • 2016
  • The passive control methods such as horizontal and vertical fences on the lower surface of the bluff body were applied to suppress the vortex shedding and enhance the aerodynamic stability of flow. For investigating the effects of the passive control methods, wind tunnel experiments on the unsteady flow field around a bluff body near a moving ground were performed. The boundary layer and velocity profiles were measured by the Hot Wire Anemometer (HWA) system and the vortex shedding patterns and flow structures in a wake region were visualized via the Particle Image Velocimetry (PIV) system. Also, it is a measuring on moving ground condition that the experimental values of the critical gap distances, Strouhal numbers and aerodynamic force FFT analyses. Through the experiments, we found that the momentum supply due to moving ground caused the vortex shedding at the lower critical gap distance rather than that of fixed ground. The horizontal and vertical fences increase the critical gap distance and it can suppress the vortex shedding. Consequently, the stability characteristics of the bluff body near a moving ground could be effectively enhanced by the simple passive control such as the vertical fences.