• 제목/요약/키워드: space morphology

검색결과 296건 처리시간 0.024초

The Morphology of Equatorial Plasma Bubbles - a review

  • Kil, Hyosub
    • Journal of Astronomy and Space Sciences
    • /
    • 제32권1호
    • /
    • pp.13-19
    • /
    • 2015
  • Plasma bubbles that occur in the equatorial F-region make up one of the most distinguishing phenomena in the ionosphere. Bubbles represent plasma depletions with respect to the background ionosphere, and are the major source of electron density irregularities in the equatorial F-region. Such bubbles are seen as plasma depletion holes (in situ satellite observations), vertical plumes (radar observations), and emission-depletion bands elongated in the north-south direction (optical observations). However, no technique can observe the whole three-dimensional structure of a bubble. Various aspects of bubbles identified using different techniques indicate that a bubble has a "shell" structure. This paper reviews the development of the concepts of "bubble" and "shell" in this context.

Segmentation of Millimeter-wave Radiometer Image via Classuncertainty and Region-homogeneity

  • Singh, Manoj Kumar;Tiwary, U.S.;Kim, Yong-Hoon
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.862-864
    • /
    • 2003
  • Thresholding is a popular image segmentation method that converts a gray-level image into a binary image. The selection of optimum threshold has remained a challenge over decades. Many image segmentation techniques are developed using information about image in other space rather than the image space itself. Most of the technique based on histogram analysis information-theoretic approaches. In this paper, the criterion function for finding optimal threshold is developed using an intensity-based classuncertainty (a histogram-based property of an image) and region-homogeneity (an image morphology-based property). The theory of the optimum thresholding method is based on postulates that objects manifest themselves with fuzzy boundaries in any digital image acquired by an imaging device. The performance of the proposed method is illustrated on experimental data obtained by W-band millimeter-wave radiometer image under different noise level.

  • PDF

New Galaxy Catalog of the Virgo Cluster

  • Kim, Suk;Rey, Soo-Chang;Jerjen, Helmut;Lisker, Thorsten;Sung, Eon-Chang;Lee, Youngdae;Chung, Jiwon;Pak, Mina;Yi, Wonhyeong;Lee, Woong
    • 천문학회보
    • /
    • 제39권2호
    • /
    • pp.50-50
    • /
    • 2014
  • We present a new catalog of galaxies in the wider region of the Virgo cluster, based on the Sloan Digital Sky Survey (SDSS) Data Release 7. The Extended Virgo Cluster Catalog (EVCC) covers an area of 725 deg2 or 60.1 Mpc2. It is 5.2 times larger than the footprint of the classical Virgo Cluster Catalog (VCC) and reaches out to 3.5 times the virial radius of the Virgo cluster. We selected 1324 spectroscopically targeted galaxies with radial velocities less than 3000 km s-1. In addition, 265 galaxies that have been missed in the SDSS spectroscopic survey but have available redshifts in the NASA Extragalactic Database are also included. Our selection process secured a total of 1589 galaxies of which 676 galaxies are not included in the VCC. The certain and possible cluster members are defined by means of redshift comparison with a cluster infall model. We employed two independent and complementary galaxy classification schemes: the traditional morphological classification based on the visual inspection of optical images and a characterization of galaxies from their spectroscopic features. SDSS u, g, r, i, and z passband photometry of all EVCC galaxies was performed using Source Extractor. We compare the EVCC galaxies with the VCC in terms of morphology, spatial distribution, and luminosity function. The EVCC defines a comprehensive galaxy sample covering a wider range in galaxy density that is significantly different from the inner region of the Virgo cluster. It will be the foundation for forthcoming galaxy evolution studies in the extended Virgo cluster region, complementing ongoing and planned Virgo cluster surveys at various wavelengths.

  • PDF

A Study of Galactic Molecular Clouds through Multiwavelength Observations

  • 박성준;민경욱;선광일;한원용;이대희
    • 천문학회보
    • /
    • 제35권1호
    • /
    • pp.68.1-68.1
    • /
    • 2010
  • We focus on two Galactic molecular clouds that are located in wholly different environments and both are observed by FIMS instrument onboard STSAT-1. The Draco cloud is known as a translucent molecular cloud at high Galactic latitude. The FUV spectra show important ionic lines of C IV, Si IV+O IV], Si II* and Al II, indicating the existence of hot and warm interstellar gases in the region. The enhanced C IV emission inside the Draco cloud region is attributable to the turbulent mixing of the interacting cold and warm/hot media, which is supported by the detection of the O III] emission line and the $H{\alpha}$ feature in this region. The Si II* emission covers the remainder of the region outside the Draco cloud, in agreement with previous observations of Galactic halos. Additionally, the H2 fluorescent map is consistent with the morphology of the atomic neutral hydrogen and dust emission of the Draco cloud. In the Aquila Rift region near Galactic plane, FIMS observed that the FUV continuum emission from the core of the Aquila Rift suffers heavy dust extinction. The entire field is divided into three sub-regions that are known as the- "halo," "diffuse," and "star-forming" regions. The "diffuse" and "star-forming" regions show various prominent H2 fluorescent emission lines, while the "halo" region indicates the general ubiquitous characteristics of H2. The CLOUD model and the FUV line ratio are included here to investigate the physical conditions of each sub-region. Finally, the development of an infrared imaging system known as the MIRIS instrument onboard STSAT-3 is briefly introduced. It can be used in WIM studies through $Pa{\alpha}$ observations.

  • PDF

Full ice-cream cone model for halo coronal mass ejections

  • Na, Hyeonock;Moon, Yong-Jae
    • 천문학회보
    • /
    • 제40권1호
    • /
    • pp.65.3-66
    • /
    • 2015
  • The determination of three dimensional parameters (e.g., radial speed, angular width, source location) of Coronal Mass Ejections (CMEs) is very important for space weather forecast. To estimate these parameters, several cone models based on a flat cone or a shallow ice-cream cone with spherical front have been suggested. In this study, we investigate which cone model is proper for halo CME morphology using 33 CMEs which are identified as halo CMEs by one spacecraft (SOHO or STEREO-A or B) and as limb CMEs by the other ones. From geometrical parameters of these CMEs such as their front curvature, we find that near full ice-cream cone CMEs (28 events) are dominant over shallow ice-cream cone CMEs (5 events). So we develop a new full ice-cream cone model by assuming that a full ice-cream cone consists of many flat cones with different heights and angular widths. This model is carried out by the following steps: (1) construct a cone for given height and angular width, (2) project the cone onto the sky plane, (3) select points comprising the outer boundary, (4) minimize the difference between the estimated projection points with the observed ones. We apply this model to several halo CMEs and compare the results with those from other methods such as a Graduated Cylindrical Shell model and a geometrical triangulation method.

  • PDF

A new description of the fractal dimension of particle aggregates in liquid medium

  • Xing, Jun;Ding, Shiqiang;Liu, Zhengning;Xu, Jirun
    • 한국입자에어로졸학회지
    • /
    • 제11권4호
    • /
    • pp.99-105
    • /
    • 2015
  • The possible existence forms of particle aggregates in liquid medium are classified into four different types according to their morphological characteristics, including the single particles that are separated from each other, the linear aggregates in which all component particles are located in a line, the planar aggregates where all particles are arranged on a plane, and the volumetric aggregates where all particles forms a three-dimensional space. These particle aggregates with different space morphologies have different fractal dimensions and different influence on the rheological phenomena of the solid-liquid system. The effects of various aggregates on the suspension viscosity are analyzed and related with the particle concentration, and then a mathematical model is presented to determine the fractal dimensions of various aggregates by measuring the apparent viscosity of the solid-liquid system. In the model, the viscous fractal dimension is developed as a new concept, the fractal dimensions of different aggregates can be obtained separately and then the relative components of various aggregates experimentally analyzed.

Nuclear star formation in galaxies due to non-axisymmetric bulges

  • Kim, Eunbin;Kim, Sungsoo S.;Lee, Gwang-Ho;Lee, Myung Gyoon;de Grijs, Richard;Choi, Yun-Young
    • 천문학회보
    • /
    • 제39권2호
    • /
    • pp.61.2-61.2
    • /
    • 2014
  • A non-axisymmetric mass distribution of galactic structures including bulge (or bar) causes gas inflow from the disk to the nuclear region, including intense star formation within few hundred parsecs of galactic central. In order to investigate the relation between the ellipticity of the bulge and the presence of a nuclear starburst, we use a volume-limited sample of galaxies with Mr < -19.5 mag at 0.02 < z < 0.05 from the Sloan Digital Sky Survey Data Release 7. Total sample is 3252 spiral galaxies, which include nuclear starburst galaxies. We find that the occurrence of nuclear starbursts has a moderate correlation with bulge ellipticity of intermediate-type spiral galaxies (morphology classes Sab-Sb) in low galaxy number density environments and isolated regions where the distance between the target galaxies and the closest galaxies is relatively far. In high galaxy number density environments and interacting regions, close encounters and mergers between galaxies can cause gas inflow to the nuclear region even without the presence of non-axisymmetric bulges.

  • PDF

Nuclear star formation in galaxies due to non-axisymmetric bulges

  • Kim, Eunbin;Kim, Sungsoo S.;Lee, Gwang-Ho;Lee, Myung Gyoon;Grijs, Richard De;Choi, Yun-Young
    • 천문학회보
    • /
    • 제39권1호
    • /
    • pp.38.1-38.1
    • /
    • 2014
  • A non-axisymmetric mass distribution in the galactic bulge (or bar) causes gas flow from the disk to the nuclear region, inducing intense star formation in the nucleus. We investigate the relation between the ellipticity of the bulge and the presence of a nuclear starburst by using a volume-limited sample of galaxies. We use 1,680 spiral galaxies with Mr < -19.5 at 0.02 <= z < 0.05 in the Sloan Digital Sky Survey Data Release 7. We find that the occurrence of nuclear starburst has a moderate correlation with bulge ellipticity in intermediate-type spiral galaxies (morphology classes Sab~Sb) in low galaxy number density environments. In high galaxy number density environments, close encounters and mergers between galaxies can cause gas inflow to the nuclear region even without the presence of non-axisymmetric bulges.

  • PDF

Characterization of EVA/PCM/Silica Compound using Silica

  • Kim, Tae-Hyun;Choi, Kyung-Man;Lee, Jong-Hwan;Choi, Myeon-Cheon;Kim, Han-Seong
    • Elastomers and Composites
    • /
    • 제56권2호
    • /
    • pp.72-78
    • /
    • 2021
  • A phase-change material (PCM) is a material that has the ability to delay heat transfer by absorbing heat from its environment or releasing heat to its environment while its phase changes from solid to liquid or liquid to solid at a specific temperature. As it is applied, it can contribute to environmental conservation such as energy savings and carbon dioxide emission reduction. In order for a PCM to store and release heat, the volume change during its phase transition should be large, and thus a phase transition space is required. When a PCM is used as a polymer additive, it is confined within the polymer, and there is no phase transition space; thus, its ability to absorb and release heat is significantly reduced. Therefore, in this study, porous silica was used to provide EVA/PCM compounds with sufficient space for their phase transition, and to improve the compatibility between the EVA and PCM, modified silica is used: surface-modified 5 wt% silica with 3-methacryloxypropyltrimethoxysilane. The compound was prepared and compared with the silica compound. The presence or absence of the modified silica surface modification was confirmed using Fourier-transform infrared spectroscopy and thermogravimetric analysis, the heat capacity of the compound was evaluated based on a differential scanning calorimetry analysis, and its mechanical strength and morphology were determined using scanning electron microscopy.

Evolution of Visual Pigments and Related Molecules

  • Hisatomi, Osamu;Yamamoto, Shintaro;Kobayashi, Yuko;Honkawa, Hanayo;Takahashi, Yusuke;Tokunaga, Fumio
    • Journal of Photoscience
    • /
    • 제9권2호
    • /
    • pp.41-43
    • /
    • 2002
  • In photoreceptor cells, light activates visual pigments consisting of a chromophore (retinal) and a protein moiety (opsin). Activated visual pigments trigger an enzymatic cascade, called phototransduction cascade, in which more than ten phototransduction proteins are participating. Two types of vertebrate photoreceptor cells, rods and cones, play roles in twilight and daylight vision, respectively. Cones are further classified into several subtypes based on their morphology and spectral sensitivity. Though the diversities of vertebrate photoreceptor cells are crucial for color discrimination and detection of light over a wider range of intensities, the molecular mechanism to characterize the photoreceptor types remains unclear. We investigated the amino acid sequences of about 50 vertebrate opsins, and found that these sequences can be classified into five fundamental subfamilies. Clear relationships were found between these subfamilies and their characteristic spectral sensitivities. In addition to opsins, we studied other phototransduction proteins. The amino acid sequences of phototransduction proteins can be classified into a few subfamilies. Even though their spectral sensitivity is considerably different, cones fundamentally share the phototransduction protein isoforms which are different from those found in rods. It is suggested that the difference in phototransduction proteins between rods and cones is responsible for their sensitivity to light. Isoforms and their selective expression may characterize individual photoreceptor cells, thus providing us with physiological functions such as color vision and daylight/twilight visions.

  • PDF