• Title/Summary/Keyword: space mean speed

Search Result 87, Processing Time 0.019 seconds

Development of Feature Selection Method for Neural Network AE Signal Pattern Recognition and Its Application to Classification of Defects of Weld and Rotating Components (신경망 AE 신호 형상인식을 위한 특징값 선택법의 개발과 용접부 및 회전체 결함 분류에의 적용 연구)

  • Lee, Kang-Yong;Hwang, In-Bom
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.1
    • /
    • pp.46-53
    • /
    • 2001
  • The purpose of this paper is to develop a new feature selection method for AE signal classification. The neural network of back propagation algorithm is used. The proposed feature selection method uses the difference between feature coordinates in feature space. This method is compared with the existing methods such as Fisher's criterion, class mean scatter criterion and eigenvector analysis in terms of the recognition rate and the convergence speed, using the signals from the defects in welding zone of austenitic stainless steel and in the metal contact of the rotary compressor. The proposed feature selection methods such as 2-D and 3-D criteria showed better results in the recognition rate than the existing ones.

  • PDF

Design and Validation of Model Inversion Flight Control Law for Fly By Wire Helicopter (FBW 헬리콥터 모델 역변환 비행제어법칙 설계 및 검증)

  • Kim, Chong-Sup;Cho, In-Je;Lee, Seung-Duck;Lee, Han-Ju
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.8
    • /
    • pp.678-687
    • /
    • 2012
  • The Fly-By-Wire(FBW) flight control system is essential to improve the stability and flying quality of the helicopter. Advanced aerospace companies, such as Bell-Sikorsky (USA) and NHI (European Consortium), have already applied the FBW flight control system to manufacture V-22 and NH-90 helicopters, respectively. This paper addresses the development of control law design using model inversion method improve the hover and low speed handling qualities of helicopter based on BO-105 model in 'Day' and 'Degraded visual environments(DVEs)' in accordance with ADS-33E-PRF. Design parameters are optimized to satisfy the handling qualities specification using Control Designer's Unified Interface (CONDUIT) commercial control law software. The result of the analysis based on CONDUIT and non-real time simulation in-house software, HETLAS (HElicopter Trim Linearization And Simulation) reveals that the provides an efficient mean to achieve Level 1 handling qualities.

Transmission and Reflection Characteristics Measurements at the 60GHz for the Various Obstacles (다양한 장애물에 대한 60GHz 대역에서의 투과 및 반사 특성 측정)

  • Song, Ki-Hong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.1
    • /
    • pp.25-32
    • /
    • 2008
  • This paper presents the reflection and transmission measurements conducted at the 60GHz suitable to provide a high speed wide band service. Mean received power and standard deviation are calculated and used to compare the characteristics of radio wave propagation to the various obstacles between transmitting and receiving antennas at the frequency. The results show that the transmitted signal strength by the steel door and copper plate are about 40dB lower than in free space, those by the rubber plate, glass and styroform are about 3dB lower than in free space. Also, the re(looted signal strengths at the 60 degree grazing angle show that in case by the partition is about 23dB lower, by the surface of a wall is about 6dB lower than by the copper plate. The presented results can be used for the design of 60 GHz picocell communication network that the reflected and transmitted waves affect to the service area.

Development of Standard Analysis Methods for Physical Properties on Korean bedsoil 1. Particle density and Bulk density (우리나라 상토의 물리적 표준분석법 설정 연구 1. 입자밀도 및 용적밀도)

  • Kim, Lee-Yul;Cho, Hee-Kee
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.35 no.6
    • /
    • pp.327-334
    • /
    • 2002
  • Method of besoil analysis were difficult to be applied universally since the use and the source material of bedsoils are diverse from country to country. Korean Standard Methods for Bedsoil Analysis was developed to measure the particle and bulk density. Fifty-three samples for horticultural bedsoil and nine samples for paddy rice bedsoil in the current market were collected. Particle density was measured by electrical pyconometer with He gas, and bulk density by the sandbox method, free fall method, plunger compaction method, free fall and plunger method, and sample weight compaction method. While the use of glass pycnometer which measures particle density to fill blank space with water was inappropriate due to floating organic and calcined inorganic materials in the water, the electrical pycnometer with gas type was suitable considering speed and accuracy. For bulk density, the sandbox method recommended as European Standard Method was more reasonable in principle than other methods. However, this method requires expensive apparatus and intricate process. Plunger compaction method was proposed as standard method, since it had higher consistence with the sandbox method than other methods, as well as an advantage of easy and prompt measurement. Particle density of bedsoil ranged $1.48{\sim}2.67Mg\;m^{-3}$(mean $1.93Mg\;m^{-3}$) for horticultural bedsoil and $2.33{\sim}2.67Mg\;m^{-3}$ (mean $2.43Mg\;m^{-3}$) for paddy rice bedsoil by the electrical pycnometer with He gas. Bulk density of bedsoil ranged $0.11{\sim}0.40Mg\;m^{-3}$ (mean $0.22Mg\;m^{-3}$) for horticultural bedsoil and $0.84{\sim}1.26Mg\;m^{-3}$(mean $1.01Mg\;m^{-3}$) for paddy rice bedsoil by plunger compaction method.

Detection Scheme Based on Gauss - Seidel Method for OTFS Systems (OTFS 시스템을 위한 Gauss - Seidel 방법 기반의 검출 기법)

  • Cha, Eunyoung;Kim, Hyeongseok;Ahn, Haesung;Kwon, Seol;Kim, Jeongchang
    • Journal of Broadcast Engineering
    • /
    • v.27 no.2
    • /
    • pp.244-247
    • /
    • 2022
  • In this paper, the performance of the decoding schemes using linear MMSE filters in the frequency and time domains and the reinforcement Gauss-Seidel algorithm for the orthogonal time frequency space (OTFS) system that can improve robustness under high-speed mobile environments are compared. The reinforcement Gauss-Seidel algorithm can improve the bit error rate performance by suppressing the noise enhancement. The simulation results show that the performance of the decoding scheme using the linear MMSE filter in the frequency domain is severely degraded due to the effect of Doppler shift as the mobile speed increases. In addition, the decoding scheme using the reinforcement Gauss-Seidel algorithm under the channel environment with 120 km/h and 500 km/h speeds outperforms the decoding schemes using linear MMSE filters in the frequency and time domains.

Analysis of Highway Traffic Indices Using Internet Search Data (검색 트래픽 정보를 활용한 고속도로 교통지표 분석 연구)

  • Ryu, Ingon;Lee, Jaeyoung;Park, Gyeong Chul;Choi, Keechoo;Hwang, Jun-Mun
    • Journal of Korean Society of Transportation
    • /
    • v.33 no.1
    • /
    • pp.14-28
    • /
    • 2015
  • Numerous research has been conducted using internet search data since the mid-2000s. For example, Google Inc. developed a service predicting influenza patterns using the internet search data. The main objective of this study is to prove the hypothesis that highway traffic indices are similar to the internet search patterns. In order to achieve this objective, a model to predict the number of vehicles entering the expressway and space-mean speed was developed and the goodness-of-fit of the model was assessed. The results revealed several findings. First, it was shown that the Google search traffic was a good predictor for the TCS entering traffic volume model at sites with frequent commute trips, and it had a negative correlation with the TCS entering traffic volume. Second, the Naver search traffic was utilized for the TCS entering traffic volume model at sites with numerous recreational trips, and it was positively correlated with the TCS entering traffic volume. Third, it was uncovered that the VDS speed had a negative relationship with the search traffic on the time series diagram. Lastly, it was concluded that the transfer function noise time series model showed the better goodness-of-fit compared to the other time series model. It is expected that "Big Data" from the internet search data can be extensively applied in the transportation field if the sources of search traffic, time difference and aggregation units are explored in the follow-up studies.

Three Dimensional Skeletal, Dentoalveolar and Airway Space Changes after Slow Maxillary Expansion in Children (어린이에서 저속 상악 확장에 따른 골격성, 치아치조성, 기도 변화에 대한 3차원적 평가)

  • Nawoon Kim;Daewoo Lee;Jae-Gon Kim;Yeonmi Yang
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.50 no.2
    • /
    • pp.155-167
    • /
    • 2023
  • The aim of this study was to investigate the effects of slow maxillary expansion (SME) on the dentoalveolar, skeletal, upper airway, and maxillary sinus using cone-beam computed tomography (CBCT). Twenty-three orthodontic patients (mean age 8.93 ± 1.61 years) who were treated with maxillary expansion using banded hyrax in the Department of Pediatric Dentistry at Jeonbuk National University Dental Hospital were included. According to the expansion speed applied, they were divided into two groups: SME (12 subjects, mean age 8.92 ± 1.45 years) and rapid maxillary expansion (RME, 11 subjects, mean age 8.94 ± 1.84 years). CBCT were obtained before (T0) and after (T1) the treatment and were analyzed with InVivo5 software (Anatomage, San Jose, CA, USA). Descriptive statistics showed no significant differences between the two groups in age, sex, or skeletal maturity. There were significant increases in maxillary width at the dentoalveolar and skeletal levels for both groups. Upper airway volume revealed a significant increase of 38.59% in the SME group and 28.72% in the RME group. However, there was no significant difference between SME group and RME group in all measurements. This study suggested the efficacy of SME in growing patients. SME was effective in increasing not only dentoalveolar and skeletal measurements but also airway volume. Therefore, pediatric dentists should select an appropriate expansion method considering the physiological aspects of periodontal tissues and discomfort in growing children.

Analysis of Human Thermal Environment in an Apartment Complex in Late Spring and Summer - Magok-dong, Gangseo-gu, Seoul- (아파트 단지의 늦봄·여름철 인간 열환경 분석 - 서울특별시 강서구 마곡동 -)

  • Park, Sookuk;Hyun, Cheolji;Kang, Hoon
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.50 no.1
    • /
    • pp.68-77
    • /
    • 2022
  • The human thermal environment in an apartment complex located in Seoul was quantitatively analyzed to devise methods to modify human heat-related stresses in landscape and urban planning. Microclimatic data (air temperature, relative humidity, wind speed, and short- and long-wave radiation) were collected at 6 locations [Apt-center, roof (cement), roof (grass), ground, playground, and a tree-lined road] in the late spring and summer, and the data were used to estimate the human thermal sensation, physiological equivalent temperature (PET) and universal thermal climate index (UTCI). As a result, the playground location had the highest thermal environment, and the roof (grass) location had the lowest. The mean difference between the two locations was 0.8-1.1℃ in air temperature, 1.8-4.0% in relative humidity, and 7.5-8.0℃ in mean radiant temperature. In open space locations, the wind speed was 0.4-0.5 ms-1 higher than others. Also, a wind tunnel effect happened at the Apt-center location during the afternoon. For the human thermal sensation, PET and UTCI, the mean differences between the playground and roof (grass) locations were: 5.2℃ (Max. 11.7℃) in late spring and 5.4℃ (Max. 18.1℃) in summer in PET; and 3.0℃ (Max. 6.1℃) in late spring and 2.6℃ (Max. 9.8℃) in summer in UTCI. The mean differences indicated a level change in PET and 1/2 level in UTCI, and the maximum differences showed greater changes, 2-3 levels in PET, and 1-1.5 levels in UTCI. Moreover, the roof (grass) location gave 4.6℃ PET reduction and a 2.5℃ UTCI reduction in late spring, and a 4.4℃ PET reduction and a 2.0℃ UTCI reduction in the summer when compared with the roof (cement) location, which results in a 2/3 level change in PET and a 1/3 level in UTCI. Green infrastructure locations [roof (grass), ground, and a tree-lined road] were not statistically significant in the reduction of PET and UTCI in thermal environment modifying effects. The implementation of green infrastructure, such as rooftop gardens, grass pavement, and street tree planting, should be adopted in landscape planning and be employed for human thermal environment modification.

Fuel consumption effects of transportation improvement options using mesoscopic traffic simulator (메조모형 시뮬레이터를 이용한 교통운영방식의 연료소모량 분석)

  • 최기주;이건영;오세창
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.1
    • /
    • pp.19-38
    • /
    • 2002
  • To evaluate the effects of transportation system operation, usually measures of effectiveness(MOE) such as travel time, space mean speed, stop/delay ratio have been used. But, energy consumption as well as the existing MOE in transportation receives more attention as an alternative MOE in transportation operation. The purpose of this study is a development of procedure, which could measure the relative energy consumption for each alternative and compare the results. A mesoscopic simulator called INTEGRATION is used to evaluate the operation of high occupancy vehicle lane, signal optimization, lane expansion, and the application of ITS. Among those, the application of ITS shows the greatest effectiveness in energy reduction, and then lane expansion, signal optimization, and the operation of high occupancy vehicle lane in the order named. Because we don't consider the characteristics of vehicle class, Potential demand and the simulation time is just for an hour. it is recommended that a procedure for precise economic analysis and an improvement in methodology are needed in the future for the expanded application of this study.

An Improved Fractal Color Image Decoding Based on Data Dependence and Vector Distortion Measure (데이터 의존성과 벡터왜곡척도를 이용한 개선된 프랙탈 칼라영상 복호화)

  • 서호찬;정태일;류권열;권기룡;문광석
    • Journal of Korea Multimedia Society
    • /
    • v.2 no.3
    • /
    • pp.289-296
    • /
    • 1999
  • In this paper, an improved fractal color image decoding method using the data dependence parts and the vector distortion measure is proposed. The vector distortion measure exploits the correlation between different color components. The pixel in RGB color space can be considered as a 30dimensional vector with elements of RGB components. The root mean square error(rms) in RGB color for similarity measure of two blocks R and R' was used. We assume that various parameter necessary in image decoding are stored in the transform table. If the parameter is referenced in decoding image, then decoding is performed by the recursive decoding method. If the parameter is not referenced in decoding image, then the parameters recognize as the data dependence parts and store its in the memory. Non-referenced parts can be decoded only one time, because its domain informations exist in the decoded parts by the recursive decoding method. Non-referenced parts are defined the data dependence parts. Image decoding method using data dependence classifies referenced parts and non-referenced parts using information of transform table. And the proposed method can be decoded only one time for R region decoding speed than Zhang & Po's method, since it is decreased the computational numbers by execution iterated contractive transformations for the referenced range only.

  • PDF