• Title/Summary/Keyword: space instrument

Search Result 482, Processing Time 0.024 seconds

THE EXTRACTION OF THE THERMAL RADIATION ASSOCIATED WITH GREENHOUSE GASES FROM AIRS MEASUREMENTS

  • Kwon, Eun-Han;Kim, Yong-Seung;Lee, Sun-Gu
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.301-304
    • /
    • 2006
  • For the purpose of investigating the contributions of various gases to climate change, the thermal radiation associated with greenhouse gases are extracted from AIRS (Atmospheric Infrared Sounder) infrared radiances over the tropical pacific region. AIRS instrument which was launched on the EOS-Aqua satellite in May 2002 covers the spectral range from 650 cm-1 to 2700 cm-1 with a spectral resolution of between 0.4 cm-1 and 1 cm-1. In order to extract the thermal radiation absorbed by individual gases, the interfering background radiances at the top of the atmosphere are simulated using the radiative transfer code MODTRAN (MODerate spectral resolution atmospheric TRANsmittance). The simulations incorporated the temperature and water vapor profiles taken from NCEP (National Centers for Environmental Prediction) reanalyses. The differences between the simulated background radiance and AIRS-measured radiance result in the absorption of upward longwave radiation by atmospheric gases (i.e. greenhouse effect). The extracted absorption bands of individual gases will allow us to quantify the radiative forcing of individual greenhouse gases and thus those data will be useful for climate change studies and for the validation of radiative transfer codes used in general circulation models.

  • PDF

A NEW METHOD TO DETERMINE THE TEMPERATURE OF CMES USING A CORONAGRAPH FILTER SYSTEM

  • CHO, KYUHYOUN;CHAE, JONGCHUL;LIM, EUN-KYUNG;CHO, KYUNG-SUK;BONG, SU-CHAN;YANG, HEESU
    • Journal of The Korean Astronomical Society
    • /
    • v.49 no.1
    • /
    • pp.45-51
    • /
    • 2016
  • The coronagraph is an instrument that enables the investigation of faint features in the vicinity of the Sun, particularly coronal mass ejections (CMEs). So far coronagraphic observations have been mainly used to determine the geometric and kinematic parameters of CMEs. Here, we introduce a new method for the determination of CME temperature using a two filter (4025 Å and 3934 Å) coronagraph system. The thermal motion of free electrons in CMEs broadens the absorption lines in the optical spectra that are produced by the Thomson scattering of visible light originating in the photosphere, which affects the intensity ratio at two different wavelengths. Thus the CME temperature can be inferred from the intensity ratio measured by the two filter coronagraph system. We demonstrate the method by invoking the graduated cylindrical shell (GCS) model for the 3-dimensional CME density distribution and discuss its significance.

Disk-averaged Spectra Simulation of Earth-like Exoplanets with Ray-tracing Method

  • Ryu, Dong-Ok;Kim, Sug-Whan
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.76.2-76.2
    • /
    • 2012
  • The understanding spectral characterization of possible earth-like extra solar planets has generated wide interested in astronomy and space science. The technical central issue in observation of exoplanet is deconvolution of the temporally and disk-averaged spectra of the exoplanets. The earth model based on atmospheric radiative transfer method has been studied in recent years for solutions of characterization of earthlike exoplanet. In this study, we report on the current progress of the new method of 3D earth model as a habitable exoplanet. The computational model has 3 components 1) the sun model, 2) an integrated earth BRDF (Bi-directional Reflectance Distribution Function) model (Atmosphere, Land and Ocean) and 3) instrument model combined in ray tracing computation. The ray characteristics such as radiative power and direction are altered as they experience reflection, refraction, transmission, absorption and scattering from encountering with each all of optical surfaces. The Land BRDF characteristics are defined by the semi-empirical "parametric-kernel-method" from POLDER missions from CNES. The ocean BRDF is defined for sea-ice cap structure and for the sea water optical model, considering sun-glint scattering. The input cloud-free atmosphere model consists of 1 layers with vertical profiles of absorption and aerosol scattering combined Rayleigh scattering and its input characteristics using the NEWS product in NASA data and spectral SMARTS from NREL and 6SV from Vermote E. The trial simulation runs result in phase dependent disk-averaged spectra and light-curves of a virtual exoplanet using 3D earth model.

  • PDF

Design of Integrated Control Software for Automated Observing System

  • Ji, Tae-Geun;Lee, Hye-In;Pak, Soojong;Im, Myungshin;Lee, Sang-Yun;Gibson, Coyne A.;Kuehne, John;Marshall, Jennifer
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.1
    • /
    • pp.57.2-57.2
    • /
    • 2017
  • Remote and robotic telescopes are the most effective instrument for astronomical survey projects. The system is based on the dynamic operation of all astronomical instruments such as dome and telescope control system (TCS), focuser, filter wheel and data taking camera. We adopt the ASCOM driver platform to control the instruments through the integrated software. It can convert different interface libraries from various manufacturers into a uniform standard library. This allows us to effectively control astronomical instruments without modifying codes. We suggest a conceptual design of software for automation of a small telescope such as the new wide-field 0.25m telescope at McDonald Observatory. It can also be applied to operation of multi-telescopes in future projects.

  • PDF

A Study on the Survey Method of the Residents′ Housing Needs Using Interactive Media - Focused on the Difference Analysis of Answer Disposition by Media - (인터랙티브 미디어를 이용한 거주자 요구 조사방법에 관한 연구 1 - 매체별 응답성향 차이분석을 중심으로 -)

  • 김석태;오찬옥;박수빈;양세화
    • Korean Institute of Interior Design Journal
    • /
    • v.13 no.5
    • /
    • pp.114-124
    • /
    • 2004
  • Most previous studies, in general, related to housing needs have analyzed the data from self-administered survey or interview using questionnaire or simple 2D floor plan. This study was Intended to suggest how to increase the reliability and effectiveness of such survey methods in examining the residents' housing needs. In order to accomplish the purpose, the two kinds of surveys using Web based VR media and typical questionnaire were peformed. The same questions were used for these two surveys, and they included the furniture characteristics, use of each room, adjustment of room size, preferences for interior colors, preferred furniture in living room, space layout of floor plan, housing life style, and preference for housing characteristics. The answer differences between these two were analyzed. The subjects were 402 housewives who lived in apartment houses in Haeundae, Busan. Finding were as follows: first, the media method was more likely to be effective than typical questionnaire survey in explaining housing needs for the adjustment of room size in housing unit plan. Second, the media method was more realistic and reliable than the other in comprehending the needs for the interior colors. Last, the VR media tended to be more effective than the other in understanding the space layout of floor plan. This research sheds light on the utilization of visual instrument for the analysis of needs related to space use.

Efficiency of Management Education in Cyber Space (사이버 교육에 있어서의 효율성에 관한 연구)

  • Jihwan Yum;Beumjun Ahn
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.5 no.2
    • /
    • pp.166-173
    • /
    • 2004
  • The new way of doing education in cyber space is not limited by time or locations. The students do not need to attend classroom physically on time. Networked computers allow students to study their subjects at any time and any where. This study tries to probe the relationships among demographic variables and instructional variables with students satisfaction in the management education. Pervious studies found out that the critical success factors of cyber educations are based on the demographic and instructional variables. The results of the study demonstrate that demographic variables are not significantly related with students satisfaction. Rather instructional variables such as personal interactions with professors, job related contents and careful reduction of difficulties countered during the class proceeding are more significantly related with learning satisfaction. The result shows the newly emerged internet based education system requires in-depth collaborations and coordination among professors, system engineers, education instrument designers, and students.

  • PDF

OCI and ROCSAT-1 Development, Operations, and Applications

  • Chen, Paul;Lee, L.S.;Lin, Shin-Fa
    • Korean Journal of Remote Sensing
    • /
    • v.15 no.4
    • /
    • pp.367-375
    • /
    • 1999
  • This paper describes the development, operations, and applications of ROCSAT-l and its Ocean Color Imager (OCI) remote-sensing payload. It is the first satellite program of NSPO. The satellite was successfully launched by Lockheed Martin's Athena on January 26, 1999 from Cape Canaveral, Florida. ROCSAT-l is a Low Earth Orbit (LEO) experimental satellite. Its circular orbit has an altitude of 600km and an inclination angle of 35 degrees. The satellite is designed to carry out scientific research missions, including ocean color imaging, experiments on ionospheric plasma and electrodynamics, and experiments using Ka-band (20∼30GHz) communication payloads. The OCI payload is utilized to observe the ocean color in 7 bands (including one redundant band) of Visible and Near-Infrared (434nm∼889nm) range with the resolution of 800m at nadir and the swath of 702km. It employs high performance telecentric optics, push-broom scanning method using Charge Coupled Devices (CCD) and large-scale integrated circuit chips. The water leaving radiance is estimated from the total inputs to the OCI, including the atmospheric scattering. The post-process estimates the water leaving radiance and generates different end products. The OCI has taken images since February 1999 after completing the early orbit checkout. Analyses have been performed to evaluate the performances of the instrument in orbit and to compare them with the pre-launch test results. This paper also briefly describes the ROCSAT-l mission operations. The spacecraft operating modes and ROCSAT Ground Segment operations are delineated, and the overall initial operations of ROCSAT-l are summarized.

Analysis of Solar Microwave Burst Spectrum, I. Nonuniform Magnetic Field

  • Lee, Jeongwoo
    • Journal of Astronomy and Space Sciences
    • /
    • v.35 no.4
    • /
    • pp.211-218
    • /
    • 2018
  • Solar microwave bursts carry information about the magnetic field in the emitting region as well as about electrons accelerated during solar flares. While this sensitivity to the coronal magnetic field must be a unique advantage of solar microwave burst observations, it also adds a complexity to spectral analysis targeted to electron diagnostics. This paper introduces a new spectral analysis procedure in which the cross-section and thickness of a microwave source are expressed as power-law functions of the magnetic field so that the degree of magnetic inhomogeneity can systematically be derived. We applied this spectral analysis tool to two contrasting events observed by the Owens Valley Solar Array: the SOL2003-04-04T20:55 flare with a steep microwave spectrum and the SOL2003-10-19T16:50 flare with a broader spectrum. Our analysis shows that the strong flare with the broader microwave spectrum occurred in a region of highly inhomogeneous magnetic field and vice versa. We further demonstrate that such source properties are consistent with the magnetic field observations from the Michelson Doppler Imager instrument onboard the Solar and Heliospheric Observatory (SOHO) spacecraft and the extreme ultraviolet imaging observations from the SOHO extreme ultraviolet imaging telescope. This spectral inversion tool is particularly useful for analyzing microwave flux spectra of strong flares from magnetically complex systems.

Analysis of Magnetic Dipole Moment for a 300-W Solar-Cell Array

  • Shin, Goo-Hwan;Kim, Dong-Guk;Kwon, Se-Jin;Lee, Hu-Seung
    • Journal of Astronomy and Space Sciences
    • /
    • v.36 no.3
    • /
    • pp.181-186
    • /
    • 2019
  • The attitude information of spacecraft can be obtained by the sensors attached to it using a star tracker, three-axis magnetometer, three-axis gyroscope, and a global positioning signal receiver. By using these sensors, the spacecraft can be maneuvered by actuators that generate torques. In particular, electromagnetic-torque bars can be used for attitude control and as a momentum-canceling instrument. The spacecraft momentum can be created by the current through the electrical circuits and coils. Thus, the current around the electromagnetic-torque bars is a critical factor for precisely controlling the spacecraft. In connection with these concerns, a solar-cell array can be considered to prevent generation of a magnetic dipole moment because the solar-cell array can introduce a large amount of current through the electrical wires. The maximum value of a magnetic dipole moment that cannot affect precise control is $0.25A{\cdot}m^2$, which takes into account the current that flows through the reaction-wheel assembly and the magnetic-torque current. In this study, we designed a 300-W solar cell array and presented an optimal wire-routing method to minimize the magnetic dipole moment for space applications. We verified our proposed method by simulation.

A Look at the Physics Concept Hierarchy of Pre-service Physics Teacher Through the Knowledge State Analysis Method (지식상태 분석법을 통한 예비 물리교사들의 학년별 물리개념 위계도 분석)

  • Park, Sang-Tae;Byun, Du-Won;Lee, Hee-Bok;Kim, Jun-Tae;Yuk, Keun-Cheol
    • Journal of The Korean Association For Science Education
    • /
    • v.25 no.7
    • /
    • pp.746-753
    • /
    • 2005
  • In order to be efficient teachers should understand the current level of leaners through diagnostic evaluation. However, it is arduous to administer a diagnostic examination in every class because of various limitations. This study examined, the major issues arising from the development of a new science diagnostic evaluation system by incorporating the using knowledge state analysis method. The proposed evaluation system was based on the knowledge state analysis method. Knowledge state analysis is a method where by a distinguished collection of knowledge uses the theory of knowledge space. The theory of knowledge space is very advantageous when analyzing knowledge in strong hierarchies like mathematics and science. It helps teaching plan through methodically analyzing a hierarchy viewpoint for students' knowledge structure. The theory can also enhance objective validity as well as support a considerable amount of data fast by using the computer. In addition, student understanding is improved through individualistic feedback. In this study, an evaluation instrument was developed that measured student learning outcome, which is unattainable from the existing method. The instrument was administered to pre-service physics teachers, and the results of student evaluation was analyzed using the theory of knowledge space. Following this, a revised diagnostic evaluation system for facilitating student individualized learning was constructed.