• Title/Summary/Keyword: space experiment

Search Result 1,945, Processing Time 0.03 seconds

Optimal Parameter Design for a Cryogenic Submerged Arc Welding(SAW) Process by Utilizing Stepwise Experimental Design and Multi-dimensional Design Space Analysis (단계적 실험 설계와 다차원 디자인 스페이스 분석 기술을 통한 초저온 SAW 공정의 최적 용접 파라미터 설계)

  • Lee, Hyun Jeong;Kim, Young Cheon;Shin, Sangmun
    • Journal of Korean Society for Quality Management
    • /
    • v.48 no.1
    • /
    • pp.51-68
    • /
    • 2020
  • Purpose: The primary objective of this research is to develop the optimal operating conditions as well as their associated design spaces for a Cryogenic Submerged Arc Welding(SAW) process by improving its quality and productivity simultaneously. Methods: In order to investigate functional relationships among quality characteristics and their associated control factors of an SAW process, a stepwise design of experiment(DoE) method is proposed in this paper. Based on the DoE results, not only a multi-dimensional design space but also a safe operating space and normal acceptable range(NAR) by integrating statistical confidence intervals were demonstrated. In addition, the optimal operating conditions within the proposed NAR can be obtained by a robust optimal design method. Results: This study provides a customized stepwise DoE method (i.e., a sequential set of DoE such as a factorial design and a central composite design) for Cryogenic SAW process and its statistical analysis results. DoE results can then provide both the main and interaction effects of input control factors and the functional relationships between the input factors and their associated output responses. Maximizing both the product quality with high impact strength and the productivity with minimum processing times simultaneously in a case study, we proposed a design space which can provide both acceptable productivity and quality levels and NARs of input control factors. In order to confirm the optimal factor settings and the proposed NARs, validation experiments were performed. Conclusion: This research may provide significant contributions and applications to many SAW problems by preparing a standardization of the functional relationship between the input factors and their associated output response. Moreover, the proposed design space based on DoE and NAR methods can simultaneously consider a number of quality characteristics including tradeoff between productivity and quality levels.

The Change Characteristic of the Stimulation and Satisfaction of the Brain Wave Reaction to the Visual Stimulation in the Space - Focus on the Influence of the Halogen and Wall - (시각적 공간자극에 나타난 뇌파반응의 자극 정도와 만족도 변화특성 - 할로겐 조명과 벽의 영향을 중심으로 -)

  • Seo, Ji-Eun
    • Korean Institute of Interior Design Journal
    • /
    • v.24 no.5
    • /
    • pp.99-107
    • /
    • 2015
  • The purpose of this study is to analyze the change of visual stimulus of users to the space through the experiment of EEG and the satisfaction of users depends on the lighting. To do that, the results measured with EEG experiment focusing on Beta ${\beta}$ were compared to each other to figure out difference in the changes of the activation of human brain on lighting's situation as the lighting off and on in the same space. The difference in the results was verified according to the characteristic of users which classified with 4 types of the spatial sensitivities. The results of this study are as following. Firstly, the spacial sensitivity of user is to communicate well with the different senses with stimulus through interaction among the elements. At this time, the brain plays a major role in build the spacial sensitivity of users as the place to make form. Secondly, there are the differences in the activation of brain depends on lighting situation even in the same space. The stimulus into the brain became generally stronger in images with lighting on than off. Especially, the response in the occipital lobe which connected with the visual center turn out strongly in the image of 'modern natural'. Because the visual stimulus interact well with the bright color, the reflectional texture and the rough texture painted the dark color. Thirdly, the satisfaction of users changed with lighting in the space. But we could know that the satisfaction of users isn't be related to the visual stimulus through the results of this study. Finally, there isn't the difference in the activation degree of brain according to the characteristic which are preference of users into 4 types of the spatial sensitivity through the results came from ANCOVA(analysis of covariance) with SPSS Program 22.

TOWARD NEXT GENERATION SOLAR CORONAGRAPH: DEVELOPMENT OF COMPACT DIAGNOSTIC CORONAGRAPH ON ISS

  • Cho, Kyungsuk;Bong, Suchan;Choi, Seonghwan;Yang, Heesu;Kim, Jihun;Baek, Jihye;Park, Jongyeob;Lim, Eun-Kyung;Kim, Rok-Soon;Kim, Sujin;Kim, Yeon-Han;Park, Young-Deuk;Clarke, S.W.;Davila, J.M.;Gopalswamy, N.;Nakariakov, V.M.;Li, B.;Pinto, R.F.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.66.2-66.2
    • /
    • 2017
  • The Korea Astronomy and Space Science Institute plans to develop a coronagraph in collaboration with National Aeronautics and Space Administrative (NASA) and install it on the International Space Station (ISS). The coronagraph is an externally occulted one stage coronagraph with a field of view from 2.5 to 15 solar radii. The observation wavelength is approximately 400 nm where strong Fraunhofer absorption lines from the photosphere are scattered by coronal electrons. Photometric filter observation around this band enables the estimation of 2D electron temperature and electron velocity distribution in the corona. Together with the high time cadence (< 12 min) of corona images to determine the geometric and kinematic parameters of coronal mass ejections, the coronagraph will yield the spatial distribution of electron density by measuring the polarized brightness. For the purpose of technical demonstration, we intend to observe the total solar eclipse in 2017 August for the filter system and to perform a stratospheric balloon experiment in 2019 for the engineering model of the coronagraph. The coronagraph is planned to be installed on the ISS in 2021 for addressing a number of questions (e.g. coronal heating and solar wind acceleration) that are both fundamental and practically important in the physics of the solar corona and of the heliosphere.

  • PDF

Study on the Optoelectronic Design for Korean Mobile Satellite Laser Ranging System

  • Lim, Hyung-Chul;Bang, Seong-Cheol;Yu, Sung-Yeol;Seo, Yoon-Kyung;Park, Eun-Seo;Kim, Kwang-Dong;Nah, Ja-Kyoung;Jang, Jeong-Gyun;Jang, Bi-Ho;Park, Jang-Hyun;Park, Jong-Uk
    • Journal of Astronomy and Space Sciences
    • /
    • v.28 no.2
    • /
    • pp.155-162
    • /
    • 2011
  • Korea Astronomy and Space Science Institute has been developing one mobile and one stationary satellite laser ranging system for the space geodesy research and precise orbit determination since 2008, which are called as ARGO-M and ARGO-F, respectively. They will be capable of daytime laser ranging as well as nighttime and provide the accurate range measurements with millimeter level precision. Laser ranging accuracy is mostly dependent on the optics and optoelectronic system which consists of event timer, optoelectronic controller and photon detectors in the case of ARGO-M. In this study, the optoelectronic system of ARGO-M is addressed and its critical design is also presented. Additionally, the experiment of the integrated optoelectronic system was performed in the laboratory to validate the functional operation of each component and its results are analyzed to investigate ARGO-M performance in advance.

Comparison of Statistical Experiments and Measures of Information

  • Sohn, Keon-Tae;Jeon, Jong-Woo
    • Journal of the Korean Statistical Society
    • /
    • v.23 no.2
    • /
    • pp.271-292
    • /
    • 1994
  • The comparison of statistical experiments with a common parameter and parameter space is discussed using the concept of the Blackwell's sufficiency and the Shannon's entropy. Binomial and censored experiments are considered as applications. The loss of information is studied under teh aggregated experiments and truncated experiments, and summerized in some tables which make it possible to indicate the choice of an appropriate experiment.

  • PDF

Leakage detection of pipeline system based on modeling and identification (모델링과 검증에 의한 파이프 라인 시스템의 유출 탐지)

  • ;;;Lee, K. S.;Song, H. K.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.905-910
    • /
    • 1991
  • This paper presets a leakage detection method based on modeling the leakage in pipeline systems. For gas pipeline systems, a method based on the state space model is suggested. For liquid pipeline systems, an experiment based on the static model equation was performed. In the experiment, it was possible to detect the leak and to diagnosis the leak situation within the error of .+-.3%.

  • PDF

Emotional Expression System Based on Dynamic Emotion Space (동적 감성 공간에 기반한 감성 표현 시스템)

  • Sim Kwee-Bo;Byun Kwang-Sub;Park Chang-Hyun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.1
    • /
    • pp.18-23
    • /
    • 2005
  • It is difficult to define and classify human emotion. These vague human emotion appear not in single emotion, but in combination of various emotion. And among them, a remarkable emotion is expressed. This paper proposes a emotional expression algorithm using dynamic emotion space, which give facial expression in similar with vague human emotion. While existing avatar express several predefined emotions from database, our emotion expression system can give unlimited various facial expression by expressing emotion based on dynamically changed emotion space. In order to see whether our system practically give complex and various human expression, we perform real implementation and experiment and verify the efficacy of emotional expression system based on dynamic emotion space.

Simulation and Experiment Study of the Cylindrical Occulter with Tapered Surface for the Solar Compact Coronagraph (소형 코로나그래프 개발을 위한 원통형 차폐기 성능 실험)

  • Yang, Heesu;Cho, Kyungsuk;Bong, Suchan;Choi, Sunghwan;Kim, Jihun;Baek, Jihye;Park, Jongyeob
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.67.1-67.1
    • /
    • 2017
  • 태양의 코로나를 관측하기 위한 코로나그래프의 가장 중요한 부분은 태양 원반으로부터의 빛을 차단하기 위한 차폐기다. 태양 원반 밝기의 1e-6 - 1e-10에 이르는 어두운 외부 코로나(>2Rs)를 관측하기 위해서는 외부차폐기에서 발생하는 회절광을 최소화 하는 것이 중요하다. 우리는 수치실험과 실험실 실험을 통해 원통형 차폐기의 성능을 조사하였다. 수치실험 결과 2.5Rs영역을 가리는 원통형 차폐기의 경우 0.4um의 파장대역에 대해서 그 벽면 각도가 0.39도일 때 차폐기에 의한 회절광이 1e-10Is로 최소가 되었다. 우리는 중국 산동대학교 암터널 실험실에서 시뮬레이션과 일치하는 실험결과를 얻었는데 그 회절광량은 이상적인 경우보다는 조금 더 밝은 1e-9Is 수준이었다. 1e-9Is의 회절광량은 일정 간격으로 배치된9장을 겹쳐놓은 차폐기의 이론적인 성능과 비슷한 값으로 외부차폐기/내부차폐기/리오트 스탑/리오트 스팟 등으로 복잡하고 긴 구조의 코로나그래프가 아닌 외부차폐기만을 이용한 짧은 광학계의 소형 코로나그래프로 외부 코로나 관측이 가능함을 보여준다.

  • PDF

Dynamic Action Space Handling Method for Reinforcement Learning Models

  • Woo, Sangchul;Sung, Yunsick
    • Journal of Information Processing Systems
    • /
    • v.16 no.5
    • /
    • pp.1223-1230
    • /
    • 2020
  • Recently, extensive studies have been conducted to apply deep learning to reinforcement learning to solve the state-space problem. If the state-space problem was solved, reinforcement learning would become applicable in various fields. For example, users can utilize dance-tutorial systems to learn how to dance by watching and imitating a virtual instructor. The instructor can perform the optimal dance to the music, to which reinforcement learning is applied. In this study, we propose a method of reinforcement learning in which the action space is dynamically adjusted. Because actions that are not performed or are unlikely to be optimal are not learned, and the state space is not allocated, the learning time can be shortened, and the state space can be reduced. In an experiment, the proposed method shows results similar to those of traditional Q-learning even when the state space of the proposed method is reduced to approximately 0.33% of that of Q-learning. Consequently, the proposed method reduces the cost and time required for learning. Traditional Q-learning requires 6 million state spaces for learning 100,000 times. In contrast, the proposed method requires only 20,000 state spaces. A higher winning rate can be achieved in a shorter period of time by retrieving 20,000 state spaces instead of 6 million.

A Novel Virtual Space Vector Modulation Strategy for the Neutral-Point Potential Comprehensive Balance of Neutral-Point-Clamped Converters

  • Zhang, Chuan-Jin;Tang, Yi;Han, Dong;Zhang, Hui;Zhang, Xiao;Wang, Ke
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.946-959
    • /
    • 2016
  • A novel Virtual Space Vector (VSV) modulation strategy for complete control of potential neutral point (NP) issues is proposed in this paper. The neutral point potential balancing problems of multi-level converters, which include elimination of low frequency oscillations and self-balancing for NP dc unbalance, are investigated first. Then a set of improved virtual space vectors with dynamic adjustment factors are introduced and a multi-objective optimization algorithm which aims to optimize these adjustment factors is presented in this paper. The improved virtual space vectors and the multi-objective optimization algorithm constitute the novel Virtual Space Vector modulation. The proposed novel Virtual Space Vector modulation can simultaneously recover NP dc unbalance and eliminate low frequency oscillations of the neutral point. Experiment results show that the proposed strategy has excellent performance, and that both of the neutral point potential issues can be solved.