• Title/Summary/Keyword: space experiment

Search Result 1,945, Processing Time 0.033 seconds

Simulation Modeling of Range and Acceleration Measurement Instruments for Satellite Formation Flying (편대비행 위성용 거리 및 가속도 관측기 시뮬레이션 모델링)

  • Kim, Jeong-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.2
    • /
    • pp.75-83
    • /
    • 2005
  • NASA/DLR Gravity Recovery and Climate Experiment (GRACE) mission, which consists of two co-orbiting low altitude satellites, is to measure the Earth gravity field with unprecedented accuracy. Its key instruments include inter-satellite ranging systems and three-axis accelerometers. For the preliminary design and requirements analysis, extensive instrument simulation models are developed. These modeling techniques and orbit-gravity field estimation techniques are described.

Minimization of Warpage in Injection-molded Parts By Optimal Design of U-type Ribs (U자형 리브의 최적설계에 의한 사출제품의 휨 최소화)

  • Park, Jong-Cheon;Kim, Kwang-Ho;Kim, Kyung-Mo;Koo, Bon-Heung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.1
    • /
    • pp.53-61
    • /
    • 2008
  • In this research, the layout and geometry of U-type ribs in the part, including significant process conditions, are automatically optimized to reduce part warpage with robustness in consideration. The optimization procedure are based on an iterative redesign methodology integrated with computer aided injection molding simulation, Taguchi's Design of Experiment(DOE), and a direct search-based optimization method. The robustness of a design alternative is efficiently measured by introducing composite noise factor and Taguchi's signal-to-noise ratio. As a solution search methodology, the modified design space reduction method based on orthogonal arrays is employed to exploit an optimal robust design alternative. To illustrate the proposed methodology, a case study is performed on simulation results, where an optimal robust design alternative is obtained with a moderate number of iterations.

  • PDF

A Study on the Comparison of the Illuminance Values from Lighting Simulation and Mock-up Experiment for Suitable Application of Lighting Simulation (조명시뮬레이션의 적절한 사용을 위한 Mock-up 실험 측정값과 주광 시뮬레이션 결과값 비교에 관한 연구)

  • Lim, Ji-Sun;Jun, Byung-Kuk;Kim, Yu-Sin;Choi, An-Seop
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.17-20
    • /
    • 2009
  • Available daylight in inside offers comfortable view environment, and psychological and physical advantages to people in a room. Architecture design has need of daylight prediction for reflection efficiently daylight. But it is difficult to predict the illuminance values in daylight system. Using various lighting simulation software is easy and simple, but we can find different results under the same conditions. This study compares with illuminance values from simulation (Lightscape 3.2, RELUX 2007, RADIANCE 3.9) and Mock-up experiment with the same space and parameter of daylight (location of space and window, date, time and sky condition).

  • PDF

A Numerical Experiment in Assimilating Agricultural Practices in a Mixed Pixel Environment using Genetic Algorithms

  • Honda, Kyoshi;Ines, Amor V.M.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.837-839
    • /
    • 2003
  • Low spatial resolution remote sensing (RS) data (LSRD) are promising in agricultural monitoring activities due to their high temporal resolution, but under such a spatial resolution, mixing in a pixel is a common problem. In this study, a numerical experiment was conducted to explore a mixed pixel problem in agriculture using a combined RSsimulation model SWAP (Soil-Water-Atmosphere -Plant) and a Genetic Algorithm (GA) approach. Results of the experiments showed that it is highly possible to address the mixed pixel problem with LSRD.

  • PDF

Characteristic of Wind Pressure Distribution on the Roof of Hyperbolic Paraboloid Spatial Structures (쌍곡선포물선 대공간 구조물의 측벽개구율에 따른 지붕의 풍압특성)

  • You, Jang-Youl;You, Ki-Pyo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.13 no.1
    • /
    • pp.51-57
    • /
    • 2013
  • There can be diverse causes in the destruction of a large space structure by strong wind such as characteristics of construction materials and changes in internal and external wind pressure of the structure. To evaluate the wind pressure of roof against the large space structure, wind pressure experiment is performed. However, in this wind pressure experiment, peak internal pressure coefficient is set according to the opening of the roof in Korea wind code. In this article, it was tried to identify the change of internal pressure coefficient and the characteristics of wind pressure coefficient acting on the roof by two kinds of opening on the side of the structure with Hyperbolic Paraboloid Spatial Structures roof. When analyzing internal pressure coefficient according to roof shape, it was found that minimum (52%) and maximum (30%~80%) overestimation was made comparing to partial opening type proposed in the current wind load. It is judged that evaluation according to the opening rate of the structure should be made to evaluate the internal pressure coefficient according to load.

Climate Influences of Galactic Cosmic Rays (GCR): Review and Implications for Research Policy (우주기원의 고에너지 입자가 기후에 미치는 영향: 연구 현황과 정책적 시사점)

  • Kim, Jiyoung;Jang, Kun-Il
    • Atmosphere
    • /
    • v.27 no.4
    • /
    • pp.499-509
    • /
    • 2017
  • Possible links among cosmic ray, cloud, and climate have scientific uncertainties. The reputed topics have been highly controversial during several decades. A link between the atmospheric ionization by galactic cosmic rays (GCR), which is modulated by solar activities, and global cloud cover was firstly proposed in 1997. Some researchers suggested that the GCR can stimulate the formation of cloud condensation nuclei (CCN) in the atmosphere, and then the higher CCN concentrations may lead to an increase of cloud cover, resulting in a cooling of the Earth's climate, and vise versa. The CLOUD (Cosmic leaving outdoor droplets) experiment was designed to study the effect of GCR on the formation of atmospheric aerosols and clouds under precisely controlled laboratory conditions. A state-of-the-art chamber experiment has greatly advanced our scientific understanding of the aerosol formation in early stage and its nucleation processes if the GCR effect is considered or not. Many studies on the climate-GCR (or space weather) connection including the CLOUD experiment have been carried out during the several decades. Although it may not be easy to clarify the physical connection, the recent scientific approaches such as the laboratory experiments or modeling studies give some implications that the research definitively contributed to reduce the scientific uncertainties of natural and anthropogenic aerosol radiative forcing as well as to better understand the formation processes of fine particulate matters as an important parameter of air quality forecast.

A Study on the Comparison of the Illuminance Values from Daylight Simulation and Mock-up Experiment for Suitable Application of Lighting Simulation (적합한 조명시뮬레이션 사용을 위한 주광 시뮬레이션과 Mock-up 실험 비교에 관한 연구)

  • Kim, Yu-Sin;Choi, An-Seop
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.1
    • /
    • pp.35-44
    • /
    • 2010
  • Available daylight in inside offers comfortable view environment, and psychological and physical advantages to people in a room. Architectural design has a need for daylight prediction. But it is difficult to predict the illuminance values in daylight system. Using various Daylight simulation software is easy and simple, but we can find different results under the same conditions. This study compares with illuminance values from simulation (Lightscape 3.2, Relux 2007, Radiance 3.9) and Mock-up experiment with a same space and parameter of daylight (location of space and window, date, time and sky condition).

Numerical Simulation of High Velocity Impact of Circular Composite Laminates

  • Woo, Kyeongsik;Kim, In-Gul;Kim, Jong Heon;Cairns, Douglas S.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.2
    • /
    • pp.236-244
    • /
    • 2017
  • In this study, the high-velocity impact penetration behavior of $[45/0/-45/90]_{ns}$ carbon/epoxy composite laminates was studied. The considered configuration includes a spherical steel ball impacting clamped circular laminates with various thicknesses and diameters. First, the impact experiment was performed to measure residual velocity and extent of damage. Next, the impact experiment was numerically simulated through finite element analysis using LS-dyna. Three-dimensional solid elements were used to model each ply of the laminates discretely, and progressive material failure was modeled using MAT162. The result indicated that the finite element simulation yielded residual velocities and damage modes well-matched with those obtained from the experiment. It was found that fiber damage was localized near the impactor penetration path, while matrix and delamination damage were much more spread out with the damage mode showing a dependency on the orientation angles and ply locations. The ballistic-limit velocities obtained by fitting the residual velocities increased almost linearly versus the laminate diameter, but the amount of increase was small, showing that the impact energy was absorbed mostly by the localized impact damage and that the influence of the laminate size was not significant at high-velocity impact.

Subsonic Flutter Experiment and Analysis of Flat Plate Wing (평판 날개의 아음속 플러터 실험 및 해석)

  • Bae, Jae-Sung;Kim, Jong-Yun;Yang, Seung-Man;Lee, In
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.5
    • /
    • pp.56-61
    • /
    • 2002
  • Experimental flutter test for a flat plate wing is performed and the flutter analysis methods are verified by comparing with the experimental results. Wing model and experimental equipment are established in the subsonic wind-tunnel. From the response of the wing, the flutter speed is estimated by using the system identification technique. MSC/NASTRAN, V-g method and root-locus method are used for the flutter analysis of the wing. The computed flutter speed is compared with the estimated one from the experiment, and they show good agreement. Wing model in the present study can be used as a benchmark model for the flutter analysis.

Ground Experiment of Spacecraft Attitude Control Using Hardware Testbed

  • Oh, Choong-Suk;Bang, Hyo-Choong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.4 no.1
    • /
    • pp.75-87
    • /
    • 2003
  • The primary objective of this study is to demonstrate ground-based experiment for the attitude control of spacecraft. A two-axis rotational simulator with a flexible ann is constructed with on-off air thrusters as actuators. The simulator is also equipped with payload pointing capability by simultaneous thruster and DC servo motor actuation. The azimuth angle is controlled by on-off thruster command while the payload elevation angle is controlled by a servo-motor. A thruster modulation technique PWM(Pulse Width Modulation) employing a time-optimal switching function plus integral error control is proposed. An optical camera is used for the purpose of pointing as well as on-board rate sensor calibration. Attitude control performance based upon the new closed-loop control law is demonstrated by ground experiment. The modified switching function turns out to be effective with improved pointing performance under external disturbance. The rate sensor calibration technique by Kalman Filter algorithm led to reduction of attitude error caused by the bias in the rate sensor output.