• Title/Summary/Keyword: space environment simulation

Search Result 586, Processing Time 0.028 seconds

DEVS Modeling and Simulation for spectral characteristic on the strip of urin examination (뇨 분석용 strip의 분광학적 특성분석을 위한 DEVS 모델링 및 시뮬레이션)

  • Cho, Y.J.;Kim, J.H.;Nam, K.G.;Kim, J.H.;Jun, K.R.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.05
    • /
    • pp.145-149
    • /
    • 1997
  • This paper describes a methodology for the development of models of discrete event system. The methodology is based on transformation of continuous state space into discrete one to homomorphically represent dynamics of continuous processes in discrete events. This paper proposes a formal structure which can coupled discrete event system models within a framework. The structure employs the discrete event specification formalism for the discrete event system models. The proposed formal structure has been applied to develop a discrete event specification model for the complex spectral density analysis of strip for urin analyzer system. For this, spectral density data of strip is partitioned into a set of Phases based on events identified through urine spectrophotometry. For each phase, a continuous system of the continuous model for the urine spectral density analysis has been simulated by programmed C++. To validate this model, first develop the discrets event specification model, then simulate the model in the DEVSIM++ environment. It has the similar simulation results for the data obtained from the continuous system simulation. The comparison shows that the discrete event specification model represents dynamics of the urine spectral density at each phase.

  • PDF

AGV Distance Learning Model Based on Virtual Simulation (가상 시뮬레이션 기반의 AGV 원격 교육 모델)

  • Jin, Go-Whan
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.11
    • /
    • pp.41-46
    • /
    • 2020
  • The start of the Fourth Industrial Revolution has brought about various changes in the domestic industry in general, and smart factories have spread to companies in the fields of production, manufacturing and logistics, and they are using automation equipment. Especially in the field of logistics automation, AGVs are widely used, and most of them use the line guidance system, which is the traditional AGV drive system. In addition, the demand for AGV system developers, system operators and managers, and maintenance personnel is increasing, and the installation of systems for education is expensive and requires a large space to utilize. It is a situation where systematic education is difficult. In this paper, we propose a virtual simulation-based AGV distance education model for smooth practice of trainees. The proposed model consisted of a model that can drive the AGV by analyzing video information, instead of the line guidance method that is the conventional technology. As a result of self-diagnosis evaluation, it was confirmed that the experimental group through online education had an average satisfaction level of 0.65 higher than the control group using existing equipment, and that it could be used in an online education environment.

Daylight Assessment of Venetian Blind by Shading Heights and Slat Angles (베네시안 블라인드의 높이와 슬랫각도 조절에 따른 계절별 실내주광분포 분석)

  • Shin, Hwa-Young;Kim, Gon;Kim, Jeong Tai
    • KIEAE Journal
    • /
    • v.11 no.2
    • /
    • pp.105-111
    • /
    • 2011
  • Aims of this study is to investigate the daylighting control strategy of venetian blind system was performed as a function of ratio of shading height to window and slat angles in the preliminary stage of the parametric study. Floor-to-ceiling window walls of living spaces are used widely in apartment buildings since the Korean government has legally allowed elimination of the balcony area. Enlarging living area by balcony elimination, the larger glass area of window is exposed to the direct sunlight. As a common sunlight controlling device, blind system can be used in all orientations and all latitudes and it may obstruct, absorb, reflect and transmit solar radiation to building by proper adjusting. However, blind system can produce discomfort in occupant and less energy efficiency, if it has not been controlled optimally. The simulation model was based on the unit module of typical living space with balcony elimination. The room dimension was $6.0m(w){\times}6.9m(d){\times}2.7m(h)$ with floor to ceiling height of 2.5m. The blind system was simulated at five slat angles (horizontal, $30^{\circ}$, $45^{\circ}$ upward and downward tilted) and the four ratio of shading height to window (fully closed, partly opened, no-blind) using the Desktop RADIANCE 2.0 program. The series of simulation results indicates that the advantages of available daylight and outside of view can be improved by proper adjusting blind system.

EDISON Platform to Supporting Education and Integration Research in Computational Science (계산과학 시뮬레이션을 위한 웹 인터페이스 자동 생성 시스템 개발)

  • Jin, Du-Seok;Lee, Jong-Suk Ruth;Cho, Kum-Won;Jeong, Jae-You;Jung, Hoe-Kyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.799-801
    • /
    • 2011
  • Computational science is a field of study concerned with constructing mathematical models and quantitative analysis techniques and using large computing resources to solve the problems which are difficult to approach in a physical experimentally. Recently, a new web-based simulation environment for computational science is becoming more and more popular for supporting multi-user access without restriction of space or time, however, to develop web-based simulation applications, the researchers performed their works too much difficulty. In this paper, we present automated web interface generation tool that allows applied researchers to concentrate on advanced research in their scientific disciplines such as Chemistry, Physics, Structural Dynamics.

  • PDF

Electric lighting energy saving through the use of a Fresnel lens based fiber-optic solar lighting system : Simulation and measurements (광화이버 및 Fresnel lens 적용 집광식 자연채광 시스템의 이용을 통한 조명에너지의 절감 : 시뮬레이션 및 실측 비교)

  • Jeong, Haejun;Kim, Wonsik;Kim, Yeongmin;Han, Hyun Joo;Chun, Wongee
    • Journal of Energy Engineering
    • /
    • v.26 no.1
    • /
    • pp.34-44
    • /
    • 2017
  • This paper deals with the effectiveness of a fiber optic solar lighting system that uses a Fresnel lens mounted on a two-axis solar tracker. A series of comparative analyses were made concerning its performance as compared to fluorescent lighting by using a simulation model based on ECOTECT and RADIANCE as well as referring to actual data. ECOTECT was used to model the test room (space) while RADIANCE was used for its indoor lighting conditions (environment). It was found that the average indoor light levels of fluorescent lighting fully satisfy the KS standard (KS A 3011, general office, class [G]: 300-400-600lux) whereas those of the solar lighting with light diffusers depends on the occlusion factor of roller shades installed on the south window.

Study on size distribution and characteristics of particulate matter suspension in indoor space depending on relative humidity (상대습도에 따른 비산 미세먼지의 크기 분포 및 특성 분석)

  • Minjeong Kim;Jiwon Park
    • Particle and aerosol research
    • /
    • v.20 no.2
    • /
    • pp.25-33
    • /
    • 2024
  • Suspension of particulate matter (PM) in indoor spaces, which increases risk of negative impact on occupants' health from exposure to PM, is influenced by humidity level in the indoor environment. The goal of this study is to investigate the property of size-resolved PM suspension in accordance with the relative humidity through simulation chamber experiments which reflect the indoor environmental characteristics. The relative humidity of simulation chamber is adjusted to 35%, 55% and 75% by placing it inside a real-size environmental chamber which allows artificial control of climatic conditions (e.g., temperature, humidity). At the respective humidity conditions, PM suspension concentration caused by occupant walking is analyzed by particle size (0.5-0.8, 0.8-1.0, 1.0-2.5, 2.5-3.5, 3.5-4.5, 4.5-5.5, 5.5-8.0, and 8.0-10 ㎛). Irrespective of the particle size, the suspension concentration reveals a decreasing tendency as the relative humidity increases. Furthermore, a one-way analysis of variance (one-way ANOVA) test statistically verifies that the suspension concentration has a significant difference depending on the indoor relative humidity level. In addition, as the relative humidity increases, a proportion of the suspended particles with 0.5-2.5 ㎛ diameter decreases, while that with 2.5-3.5 ㎛ diameter increases. The reason is considered that the humidity has an effect on adhesion and coagulation forces of the particles.

Development and Verification of OGSFLAC Simulator for Hydromechanical Coupled Analysis: Single-phase Fluid Flow Analysis (수리-역학적 복합거동 해석을 위한 OGSFLAC 시뮬레이터 개발 및 검증: 단상 유체 거동 해석)

  • Park, Chan-Hee;Kim, Taehyun;Park, Eui-Seob;Jung, Yong-Bok;Bang, Eun-Seok
    • Tunnel and Underground Space
    • /
    • v.29 no.6
    • /
    • pp.468-479
    • /
    • 2019
  • It is essential to comprehend coupled hydro-mechanical behavior to utilize subsurface for the recent demand for underground space usage. In this study, we developed a new simulator for numerical simulation as a tool for researching to consider the various domestic field and subsurface conditions. To develop the new module, we combined OpenGeoSys, one of the scientific software package that handles fluid mechanics (H), thermodynamics (T), and rock and soil mechanics (M) in the subsurface with FLAC3D, one of the commercial software for geotechnical engineering problems reinforced. In this simulator development, we design OpenGeoSys as a master and FLAC3D as a slave via a file-based sequential coupling. We have chosen Terzaghi's consolidation problem related to single-phase fluid flow at a saturated condition as a benchmark model to verify the proposed module. The comparative results between the analytical solution and numerical analysis showed a good agreement.

Numerical Simulation of Ocean - Ice Shelf Interaction: Water Mass Circulation in the Terra Nova Bay, Antarctica (해양-빙붕 상호작용을 고려한 남극 테라노바 만에서 수괴 형성과 순환의 수치 시뮬레이션)

  • Taekyun, Kim;Emilia Kyung, Jin;Ji Sung, Na;Choon Ki, Lee;Won Sang, Lee;Jae-Hong, Moon
    • Ocean and Polar Research
    • /
    • v.44 no.4
    • /
    • pp.269-285
    • /
    • 2022
  • The interaction between ocean and ice shelf is a critical physical process in relation to water mass transformations and ice shelf melting/freezing at the ocean-ice interface. However, it remains challenging to thoroughly understand the process due to a lack of observational data with respect to ice shelf cavities. This is the first study to simulate the variability and circulation of water mass both overlying the continental shelf and underneath an ice shelf and an ice tongue in the Terra Nova Bay (TNB), East Antarctica. To explore the properties of water mass and circulation patterns in the TNB and the corresponding effects on sub ice shelf basal melting, we explicitly incorporate the dynamic-thermodynamic processes acting on the ice shelf in the Regional Ocean Modeling System. The simulated water mass formation and circulation in the TNB region agree well with previous studies. The model results show that the TNB circulation is dominated by the geostrophic currents driven by lateral density gradients induced by the releasing of brine or freshwater at the polynya of the TNB. Meanwhile, the circulation dynamics in the cavity under the Nansen Ice shelf (NIS) are different from those in the TNB. The gravity-driven bottom current induced by High Salinity Shelf Water (HSSW) formed at the TNB polynya flows towards the grounding line, and the buoyance-driven flow associated with glacial meltwater generated by the HSSW emerges from the cavity along the ice base. Both current systems compose the thermohaline overturning circulation in the NIS cavity. This study estimates the NIS basal melting rate to be 0.98 m/a, which is comparable to the previously observed melt rate. However, the melting rate shows a significant variation in space and time.

Study on a Spin Stabilization Technique Using a Spin Table (스핀테이블을 이용한 스핀안정화 기법 연구)

  • Kim, Dae-Yeon;Suh, Jong-Eun;Han, Jae-Hung;Seo, Sang-Hyeon;Kim, Kwang-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.5
    • /
    • pp.419-426
    • /
    • 2018
  • For an orbit transfer in a space exploration mission, a solid or liquid rocket booster is included at the last stage of the launch vehicle. During the orbit transfer, thrust misalignment can cause a severe orbit error. Three axis attitude control or spin stabilization can be implemented to minimize the error. Spin stabilization technique has advantages in structural simplicity and lightness. One of ways to apply the spin stabilization to the payload is to include a spin table system in the launch vehicle. In this paper, effect of the spin table system on separation dynamics of the payload is analyzed. Simple model of the spin table to mimic basic functions is designed and simulation environment is established with the model. Effect of the spin table is tested by evaluating separation dynamics of a payload with and without the spin table. Analysis on tolerance effect of separation spring constant on separation dynamics of a payload is conducted.

Development of CanSat System for Collecting Weather Information With Autorotating Science Payload Ejection Function (자동회전 과학 탑재체 사출 기능을 갖춘 기상정보 수집용 캔위성 체계 개발)

  • Kim, Youngjun;Park, Junsoo;Nam, Jaeyoung;Lee, Junhyuck;Choi, Yunwon;Yoo, Seunghoon;Lee, Sanghyun;Lee, Younggun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.8
    • /
    • pp.573-581
    • /
    • 2022
  • This paper deals with the development of CanSat system, which ejects two maple seed-type autorotating science payloads and collects weather information. The CanSat consists of two autorotating science payloads and a container. The container is equipped with devices for launching science payloads and communication with the ground station, and launches science payloads one by one at different designated altitudes. The science payload consists of a space for loading and a large wing, and rotates to generate lift for slowing down the fall speed. Specifically, after being ejected, it descends at a speed of 20 m/s or less, measures the rotation rate, atmospheric pressure, and temperature, and transmits the measured value to the container at a rate of once per second. The communication system is a master-slave structure, and the science payload transmits all data to the master container, which aggregates both the received data and its own data, and transmits it to the ground station. All telemetry can be checked in real time using the ground station software developed in-house. A simulation was performed in the simulation environment, and the performance of the CanSat system that satisfies the mission requirements was confirmed.